
Oracle® Database
Administrator's Reference

18c for Linux and UNIX-Based Operating Systems
E83902-02
July 2018

Oracle Database Administrator's Reference, 18c for Linux and UNIX-Based Operating Systems

E83902-02

Copyright © 2006, 2018, Oracle and/or its affiliates. All rights reserved.

Primary Author: Bharathi Jayathirtha

Contributing Authors: Subhash Chandra, Prakash Jashnani, Tanaya Bhattacharjee

Contributors: Kevin Flood, Pat Huey, Clara Jaeckel, Emily Murphy, Terri Winters, Subhranshu Banerjee,
Mark Bauer, Robert Chang, Jonathan Creighton, Sudip Datta, Thirumaleshwara Hasandka, Joel Kallman,
George Kotsovolos, Richard Long, Rolly Lv, Padmanabhan Manavazhi, Matthew Mckerley, Krishna Mohan,
Rajendra Pingte, Hanlin Qian, Janelle Simmons, Roy Swonger, Michael Coulter, Robert Achacoso, Malai
Stalin, Ramesh Chakravarthula, David Price, Douglas Williams, Joseph Therrattil Koonen, Binoy Sukumaran,
and Sumanta Chatterjee.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience x

Documentation Accessibility x

Set Up Java Access Bridge to Implement Java Accessibility x

Related Documentation xi

Conventions xi

Command Syntax xi

Terminology xii

Accessing Documentation xii

 Changes in This Release for Oracle Database Administrator's
Reference

Changes in Oracle Database 18c xiii

1 Administering Oracle Database

1.1 Overview 1-1

1.2 Environment Variables 1-1

1.2.1 Oracle Database Environment Variables 1-2

1.2.2 Linux and UNIX Environment Variables 1-5

1.2.3 Setting a Common Environment 1-6

1.2.4 Setting the System Time Zone 1-7

1.3 Initialization Parameters 1-8

1.3.1 ASM_DISKSTRING Initialization Parameter 1-8

1.3.2 DISK_ASYNCH_IO Initialization Parameter (HP-UX) 1-8

1.3.3 PROCESSOR_GROUP_NAME Initialization Parameter 1-9

1.3.4 Managing Diagnostic Data 1-9

2 Stopping and Starting Oracle Software

2.1 Stopping and Starting Oracle Processes 2-1

iii

2.1.1 Stopping and Starting Oracle Database and Oracle Automatic Storage
Management Instances 2-1

2.1.1.1 Stopping an Oracle Database or Oracle Automatic Storage
Management Instance 2-2

2.1.1.2 Restarting an Oracle Database or Oracle Automatic Storage
Management Instance 2-3

2.1.2 Stopping and Starting Oracle Restart 2-3

2.2 About Automating Database Shutdown and Startup 2-3

2.2.1 Automating Database Startup and Shutdown 2-4

3 Configuring Oracle Database

3.1 Using Configuration Assistants 3-1

3.1.1 Using Oracle Net Configuration Assistant 3-1

3.1.2 Using Oracle Database Upgrade Assistant 3-1

3.1.3 Using Oracle Database Configuration Assistant 3-2

3.2 Relinking Executables 3-2

4 Administering SQL*Plus

4.1 Administering Command-Line SQL*Plus 4-1

4.1.1 Using Setup Files 4-1

4.1.2 Using the PRODUCT_USER_PROFILE Table 4-2

4.1.3 Using Oracle Database Sample Schemas 4-2

4.1.4 Installing and Removing SQL*Plus Command-Line Help 4-2

4.1.4.1 Installing SQL*Plus Command-Line Help 4-3

4.1.4.2 Removing SQL*Plus Command-Line Help 4-3

4.2 Using Command-Line SQL*Plus 4-3

4.2.1 Using a System Editor from SQL*Plus 4-4

4.2.2 Running Operating System Commands from SQL*Plus 4-4

4.2.3 Interrupting SQL*Plus 4-5

4.2.4 Using the SPOOL Command 4-5

4.3 SQL*Plus Restrictions 4-5

4.3.1 Resizing Windows 4-5

4.3.2 Return Codes 4-5

4.3.3 Hiding the Password 4-5

5 Configuring Oracle Net Services

5.1 Locating Oracle Net Services Configuration Files 5-1

5.2 Using Adapters Utility 5-2

5.3 Using Oracle Protocol Support 5-2

iv

5.3.1 IPC Protocol Support 5-2

5.3.2 TCP/IP Protocol Support 5-3

5.3.3 TCP/IP with Secure Sockets Layer Protocol Support 5-3

5.4 Setting Up the Listener for TCP/IP or TCP/IP with Secure Sockets Layer 5-4

6 Using Oracle Precompilers and the Oracle Call Interface

6.1 Overview of Oracle Precompilers 6-1

6.1.1 Precompiler Configuration Files 6-2

6.1.2 Relinking Precompiler Executables 6-2

6.1.3 Issues Common to All Precompilers 6-3

6.1.4 Static and Dynamic Linking 6-3

6.1.5 Client Shared and Static Libraries 6-3

6.1.6 Generating the Client Static Library 6-4

6.2 Bit-Length Support for Client Applications 6-5

6.3 Pro*C/C++ Precompiler 6-6

6.3.1 Pro*C/C++ Demonstration Programs 6-6

6.3.2 Pro*C/C++ User Programs 6-8

6.4 Pro*COBOL Precompiler 6-9

6.4.1 Pro*COBOL Environment Variables 6-9

6.4.1.1 Micro Focus Server Express COBOL Compiler 6-9

6.4.1.2 Acucorp ACUCOBOL-GT COBOL Compiler 6-10

6.4.2 Pro*COBOL Oracle Runtime System 6-11

6.4.3 Pro*COBOL Demonstration Programs 6-12

6.4.4 Pro*COBOL User Programs 6-13

6.4.5 FORMAT Precompiler Option 6-13

6.5 Pro*FORTRAN Precompiler 6-14

6.5.1 Pro*FORTRAN Demonstration Programs 6-14

6.5.2 Pro*FORTRAN User Programs 6-15

6.6 SQL*Module for ADA 6-16

6.6.1 SQL*Module for Ada Demonstration Programs 6-16

6.6.2 SQL*Module for Ada User Programs 6-17

6.7 OCI and OCCI 6-17

6.7.1 OCI and OCCI Demonstration Programs 6-18

6.7.2 OCI and OCCI User Programs 6-18

6.8 Running Oracle JDBC/OCI Programs with a 64-Bit Driver 6-19

6.9 Custom Make Files 6-20

6.10 Correcting Undefined Symbols 6-20

6.11 Multithreaded Applications 6-21

6.12 Using Signal Handlers 6-21

v

6.13 XA Functionality 6-23

7 SQL*Loader and PL/SQL Demonstrations

7.1 SQL*Loader Demonstrations 7-1

7.2 PL/SQL Demonstrations 7-1

7.3 Calling 32-Bit External Procedures from 64-Bit Oracle Database PL/SQL 7-4

8 Tuning Oracle Database

8.1 Importance of Tuning 8-1

8.2 Operating System Tools 8-1

8.2.1 vmstat 8-2

8.2.2 sar 8-3

8.2.3 iostat 8-4

8.2.4 swap, swapinfo, swapon, or lsps 8-4

8.2.5 Oracle Solaris Tools 8-4

8.2.6 Linux Tools 8-5

8.2.7 IBM AIX on POWER Systems (64-Bit) Tools 8-5

8.2.7.1 Base Operation System Tools 8-5

8.2.7.2 Performance Toolbox 8-6

8.2.7.3 System Management Interface Tool 8-7

8.2.8 HP-UX Tools 8-7

8.3 Tuning Memory Management 8-8

8.3.1 Allocating Sufficient Swap Space 8-8

8.3.2 Monitoring Paging 8-10

8.3.3 Adjusting Oracle Block Size 8-10

8.3.4 Allocating Memory Resource 8-11

8.4 Tuning Disk Input-Output 8-11

8.4.1 Using Automatic Storage Management 8-12

8.4.2 Choosing the Appropriate File System Type 8-12

8.5 Monitoring Disk Performance 8-13

8.5.1 Monitoring Disk Performance on Operating Systems 8-13

8.5.2 Using Disk Resync to Monitor Automatic Storage Management Disk
Group 8-13

8.6 System Global Area 8-13

8.6.1 Determining the Size of the SGA 8-14

8.6.2 System Resource Verifier Utility 8-15

8.6.2.1 Purpose of the sysresv Utility 8-15

8.6.2.2 Preconditions for Using sysresv 8-15

8.6.2.3 Syntax for sysresv 8-15

8.6.2.4 Examples of Using sysresv 8-16

vi

8.6.3 Guidelines for Setting Semaphore Parameters 8-16

8.6.4 Shared Memory on IBM AIX on POWER Systems (64-Bit) 8-17

8.7 Tuning the Operating System Buffer Cache 8-18

A Administering Oracle Database on Oracle Solaris

A.1 Oracle Solaris Shared Memory Environment A-1

A.1.1 About Optimized Shared Memory A-1

A.1.2 Checking for Optimized Shared Memory A-2

A.1.3 About ISM and DISM A-2

A.1.4 Checking for ISM or DISM A-2

A.1.5 About the oradism Utility A-3

A.1.6 How Oracle Database Decides Between OSM, ISM and DISM A-3

A.2 About Creating Solaris Resource Pools A-4

A.3 About Multi-CPU Binding Functionality A-4

B Administering Oracle Database on Linux

B.1 Supporting Asynchronous Input-Output B-1

B.2 Asynchronous Input-Output Support B-2

B.3 Enabling Direct Input-Output Support B-2

B.4 Enabling Simultaneous Multithreading B-2

B.5 Allocating Shared Resources B-3

B.6 About Creating Cgroups on Linux Systems B-4

B.7 Overview of HugePages B-4

B.7.1 Reviewing HugePages Memory Allocation B-4

B.7.2 Using HugePages on Linux B-5

B.7.3 Tuning SGA With HugePages B-5

B.7.4 Configuring HugePages on Linux B-6

B.7.5 Restrictions for HugePages Configurations B-8

B.7.6 Disabling Transparent HugePages B-8

C Administering Oracle Database on IBM AIX on POWER Systems
(64-Bit)

C.1 Memory and Paging C-1

C.1.1 Kernel Parameters C-1

C.1.2 Allocating Sufficient Paging Space C-2

C.1.3 Controlling Paging C-3

C.1.4 Setting the Database Block Size C-3

C.1.5 Tuning the Log Archive Buffers C-3

vii

C.1.6 Input-Output Buffers and SQL*Loader C-4

C.2 Disk Input-Output Issues C-4

C.2.1 IBM AIX on POWER Systems (64-Bit) Logical Volume Manager C-4

C.2.2 Using Journaled File Systems Compared to Raw Logical Volumes C-5

C.2.3 Using Asynchronous Input-Output C-7

C.2.4 Input-Output Slaves C-7

C.2.5 Using the DB_FILE_MULTIBLOCK_READ_COUNT Parameter C-8

C.2.6 Tuning Disk Input-Output Pacing C-8

C.2.7 Resilvering with Oracle Database C-9

C.3 CPU Scheduling and Process Priorities C-9

C.4 AIXTHREAD_SCOPE Environment Variable C-10

C.5 Network Information Service external naming support C-10

C.6 Configuring IBM Java Secure Socket Extension Provider with Oracle JDBC
Thin Driver C-10

D Administering Oracle Database on HP-UX

D.1 HP-UX Shared Memory Segments for an Oracle Instance D-1

D.2 HP-UX SCHED_NOAGE Scheduling Policy D-2

D.2.1 Enabling SCHED_NOAGE for Oracle Database D-2

D.3 Lightweight Timer Implementation D-3

D.4 Asynchronous Input-Output D-3

D.4.1 Granting MLOCK Privilege D-4

D.4.2 Implementing Asynchronous Input-Output D-4

D.4.3 Verifying Asynchronous Input-Output D-6

D.4.3.1 Verifying That HP-UX Asynchronous Driver is Configured for
Oracle Database D-7

D.4.3.2 Verifying that Oracle Database is Using Asynchronous Input-
Output D-7

D.4.4 Asynchronous Flag in SGA D-8

D.5 Large Memory Allocations and Oracle Database Tuning D-8

D.5.1 Default Large Virtual Memory Page Size D-8

D.5.2 Tuning Recommendations D-9

D.5.3 Tunable Base Page Size D-9

D.6 CPU_COUNT Initialization Parameter and HP-UX Dynamic Processor
Reconfiguration D-10

D.7 Network Information Service external naming support D-10

D.8 Activating and Setting Expanded Host Names and Node Names D-10

E Using Oracle ODBC Driver

E.1 Oracle ODBC Features Not Supported E-1

viii

E.2 Implementation of Data Types E-2

E.3 Limitations on Data Types E-2

E.4 Format of the Connection String for the SQLDriverConnect Function E-3

E.5 Reducing Lock Timeout in a Program E-5

E.6 Linking ODBC Applications E-5

E.7 Obtaining Information About ROWIDs E-5

E.8 ROWIDs in a WHERE Clause E-5

E.9 Enabling Result Sets E-5

E.10 Enabling EXEC Syntax E-12

E.11 Supported Functionality E-12

E.11.1 API Conformance E-12

E.11.2 Implementation of ODBC API Functions E-13

E.11.3 Implementation of the ODBC SQL Syntax E-14

E.11.4 Implementation of Data Types E-14

E.12 Unicode Support E-14

E.12.1 Unicode Support Within the ODBC Environment E-14

E.12.2 Unicode Support in ODBC API E-15

E.12.3 SQLGetData Performance E-15

E.12.4 Unicode Samples E-16

E.13 Performance and Tuning E-21

E.13.1 General ODBC Programming Guidelines E-21

E.13.2 Data Source Configuration Options E-22

E.13.3 DATE and TIMESTAMP Data Types E-24

E.14 Error Messages E-24

F Database Limits

F.1 Database Limits F-1

Index

ix

Preface

This guide provides platform-specific information about administering and configuring
Oracle Database 18c on the following platforms:

• Oracle Solaris

• Linux

• IBM AIX on POWER Systems (64-Bit)

• HP-UX Itanium

This guide supplements the Oracle Database Administrator's Guide.

Audience
This guide is intended for anyone responsible for administering and configuring Oracle
Database 18c. If you are configuring Oracle RAC, then refer to Oracle Real Application
Clusters Administration and Deployment Guide.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Set Up Java Access Bridge to Implement Java Accessibility
Install Java Access Bridge so that assistive technologies on Microsoft Windows
systems can use the Java Accessibility API.

Java Access Bridge is a technology that enables Java applications and applets that
implement the Java Accessibility API to be visible to assistive technologies on
Microsoft Windows systems.

Refer to Java Platform, Standard Edition Accessibility Guide for information about the
minimum supported versions of assistive technologies required to use Java Access
Bridge. Also refer to this guide to obtain installation and testing instructions, and
instructions for how to use Java Access Bridge.

Preface

x

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Related Topics

• Java Platform, Standard Edition Java Accessibility Guide

Related Documentation
For important information, refer to your platform-specific Release Notes, Installation
Guides, and Examples Installation Guide in the Oracle Database Documentation
Library.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Command Syntax
UNIX command syntax appears in monospace font. The dollar character ($), number
sign (#), or percent character (%) are UNIX command prompts. Do not enter them as
part of the command. The following command syntax conventions are used in this
guide:

Convention Description

backslash \ A backslash is the UNIX command continuation character. It is used in
command examples that are too long to fit on a single line. Enter the
command as displayed (with a backslash) or enter it on a single line without
a backslash:

dd if=/dev/rdsk/c0t1d0s6 of=/dev/rst0 bs=10b \
count=10000

braces { } Braces indicate required items:

.DEFINE {macro1}

brackets [] Brackets indicate optional items:

cvtcrt termname [outfile]

ellipses ... Ellipses indicate an arbitrary number of similar items:

CHKVAL fieldname value1 value2 ... valueN

italic Italic type indicates a variable. Substitute a value for the variable:

library_name

Preface

xi

Convention Description

vertical line | A vertical line indicates a choice within braces or brackets:

FILE filesize [K|M]

Terminology
The names of some UNIX operating systems have been shortened in this guide.
These are:

Operating System Abbreviated Name

Oracle Solaris on SPARC (64-
Bit)
Oracle Solaris on x86-64 (64–
Bit)

Oracle Solaris

Note: Where the information for Oracle Solaris is different
on a particular architecture, this is noted in the text.

Linux x86-64 Linux

Note: Where the information for Linux is different on a
particular architecture, this is noted in the text.

Accessing Documentation
The documentation for this release includes platform-specific documentation and
generic product documentation. Platform-specific documentation includes information
about installing, configuring, and using Oracle products on a particular platform. The
documentation is available in Adobe portable document format (PDF) and HTML
format.

All Oracle documentation is available at the following URL:

http://docs.oracle.com/en/

Note:

Platform-specific documentation is current at the time of release. For the
latest information, Oracle recommends you to go to Oracle Technology
Network website.

Preface

xii

http://www.oracle.com/technetwork/indexes/documentation/index.html

Changes in This Release for Oracle
Database Administrator's Reference

This preface contains:

• Changes in Oracle Database 18c

Changes in Oracle Database 18c
This section describes changes in Oracle Database Administrator's Reference for
Linux and UNIX-Based Operating Systems for Oracle Database 18c.

• New Features

• Deprecated Features for 18c

New Features
The following is a list of new features or enhancements provided with Oracle Database
18c:

• Read-Only Oracle Home

Starting with Oracle Database 18c, if you choose a read-only Oracle home, then
the database tools and processes write under the ORACLE_BASE_HOME path instead of
under the Oracle home directory.

A read-only Oracle home separates the software from the database configuration
information and log files. This separation enables you to easily share the software
across different deployments. A read-only Oracle home also simplifies version
control and standardization.

See Also:

Oracle Database Administrator’s Guide for more information about
configuring an Oracle Home in Read-Only mode

Deprecated Features for Oracle Database 18c

The following feature is deprecated in this release:

• Deprecation of PRODUCT_USER_PROFILE Table

Starting in Oracle Database 18c, the SQL*Plus table PRODUCT_USER_PROFILE (PUP)
table is deprecated.

xiii

The only use for the PRODUCT_USER_PROFILE (PUP) table is to provide a mechanism
to control product-level security for SQL*Plus. Starting with Oracle Database 18c,
this mechanism is no longer relevant. This SQL*Plus product-level security feature
will be unavailable in Oracle Database 19c. Oracle recommends that you protect
data by using Oracle Database settings, so that you ensure consistent security
across all client applications.

Changes in This Release for Oracle Database Administrator's Reference

xiv

1
Administering Oracle Database

This chapter provides information about administering Oracle Database on UNIX-
based operating systems. It contains the following sections:

• Overview

• Environment Variables

• Initialization Parameters

• Managing Diagnostic Data

See Also:

• The appropriate appendix in this guide for platform-specific information
about administering Oracle Database

• Oracle Database Administrator's Guide and Database 2 Day DBA for
generic information about administering Oracle Database

1.1 Overview
You must set Oracle Database environment variables, parameters, and user settings
for Oracle Database to work. This chapter describes the various settings for Oracle
Database.

In Oracle Database files and programs, a question mark (?) represents the value of
the ORACLE_HOME environment variable. For example, Oracle Database expands the
question mark in the following SQL statement to the full path of the Oracle home
directory:

SQL> ALTER TABLESPACE TEMP ADD DATAFILE '?/dbs/temp02.dbf' SIZE 200M

Similarly, the at sign (@) represents the ORACLE_SID environment variable. For
example, to indicate a file that belongs to the current instance, run the following
command:

SQL> ALTER TABLESPACE tablespace_name ADD DATAFILE tempfile@.dbf

1.2 Environment Variables
This section describes the most commonly used Oracle Database and operating
system environment variables. You must define some environment variables before
installing Oracle Database. This section covers the following topics:

• Oracle Database Environment Variables

• Linux and UNIX Environment Variables

1-1

• Setting a Common Environment

• Setting the System Time Zone

To display the current value of an environment variable, use the env command. For
example, to display the value of the ORACLE_SID environment variable, run the following
command:

$ env | grep ORACLE_SID

To display the current value of all environment variables, run the env command as
follows:

$ env | more

1.2.1 Oracle Database Environment Variables
The following table describes some environment variables used with Oracle Database.

Table 1-1 Oracle Database Environment Variables

Variable Definition

NLS_LANG Function: Specifies the language, territory, and character set of the client
environment. The client character set specified by NLS_LANG must match the
character set of the terminal or terminal emulator. If required, NLS_LANG can be
temporarily reset to another character set before starting a non-interactive batch
program to match the character set of files and scripts processed by this
program. The character set specified by NLS_LANG can be different from the
database character set, in which case the character set is automatically
converted.

Refer to Oracle Database Globalization Support Guide for a list of parameters for
this variable.

Syntax:language_territory.characterset

Example:french_france.we8iso8859p15

ORA_NLS10 Function: Specifies the directory where the language, territory, character set, and
linguistic definition files are stored.

Syntax: directory_path

Example: $ORACLE_HOME/nls/data

ORA_TZFILE Function: Specifies the full path and file name of the time zone file. The Oracle
Database Server always uses the large time zone file ($ORACLE_HOME/oracore/
zoneinfo/timezlrg_number.dat). If you want to use the small time zone file on
the client side, you must set this environment variable to the full path of the small
time zone file ($ORACLE_HOME/oracore/zoneinfo/timezone_number.dat). If you
use the small time zone file on the client side, you must ensure that the database
you access contains data only in the time zone regions recognized by the small
time zone file.

Syntax: directory_path

Example: $ORACLE_HOME/oracore/zoneinfo/timezlrg_11.dat

ORACLE_BASE Function: Specifies the base of the Oracle directory structure for Optimal Flexible
Architecture compliant installations.

Syntax: directory_path

Example: /u01/app/oracle

Chapter 1
Environment Variables

1-2

Table 1-1 (Cont.) Oracle Database Environment Variables

Variable Definition

ORACLE_HOME Function: Specifies the directory containing the Oracle software.

Syntax: directory_path

Example: $ORACLE_BASE/product/18.0.0/dbhome_1

ORACLE_PATH Function: Specifies the search path for files used by Oracle applications such as
SQL*Plus. If the full path to the file is not specified, or if the file is not in the
current directory, then the Oracle application uses ORACLE_PATH to locate the file.

Syntax: Colon-separated list of directories:

directory1:directory2:directory3

Example: /u01/app/oracle/product/18.0.0/dbhome_1/bin:

ORACLE_SID Function: Specifies the Oracle system identifier.

Syntax: A string of numbers and letters that must begin with a letter. Oracle
recommends a maximum of 8 characters for system identifiers. For more
information about this environment variable, refer to Oracle Database Installation
Guide.

Example: SAL1

ORACLE_TRACE Function: Enables the tracing of shell scripts during an installation. If it is set to T,
then many Oracle shell scripts use the set -x command, which prints commands
and their arguments as they are run. If it is set to any other value, or no value,
then the scripts do not use the set -x command.

Syntax: T or not T

Example: T

ORAENV_ASK Function: Controls whether the oraenv or coraenv script prompts or does not
prompt for the value of the ORACLE_SID environment variable. If it is set to NO, then
the scripts do not prompt for the value of the ORACLE_SID environment variable. If
it is set to any other value, or no value, then the scripts prompt for a value for the
ORACLE_SID environment variable.

Syntax: NO or not NO

Example: NO

SQLPATH Function: Specifies the directory or list of directories that SQL*Plus searches for a
login.sql file.

Syntax: Colon-separated list of directories: directory1:directory2:directory3

Example: /home:/home/oracle:/u01/oracle

TNS_ADMIN Function: Specifies the directory containing the Oracle Net Services configuration
files.

Syntax: directory_path

Example: $ORACLE_HOME/network/admin

Chapter 1
Environment Variables

1-3

Table 1-1 (Cont.) Oracle Database Environment Variables

Variable Definition

TWO_TASK Function: Specifies the default connect identifier to use in the connect string. If
this environment variable is set, then do not specify the connect identifier in the
connect string. For example, if the TWO_TASK environment variable is set to sales,
then you can connect to a database by using the following command:

SQL> CONNECT username
Enter password: password

Syntax: Any connect identifier.

Range of Values: Any valid connect identifier that can be resolved by using a
naming method, such as a tnsnames.ora file or a directory server.

Example: PRODDB_TCP

NLS_OS_CHARSET Function: Specifies the Oracle character set name corresponding to the UNIX
locale character set in which the file names and user names are encoded by the
operating system. You must set the environment variable NLS_OS_CHARSET, if the
UNIX locale character set is different from the Oracle client character set. These
two character sets may differ, for example, if NLS_LANG is set to a particular
character set used to encode an SQL script, which is to be executed in an
SQL*Plus session. Usually, the Oracle client character set and the operating
system character set are the same and NLS_OS_CHARSET must not be set.

Syntax: characterset

Example: WE8ISO8859P1

Note:

• To prevent conflicts, do not define environment variables with names
that are identical to the names of Oracle Database server processes. For
example ARCH, PMON, and DBWR.

• If the Oracle installation owner (oracle user) environment variables are
missing, or if they are set to incorrect paths, then you may encounter
undefined errors during Oracle Database startup. Ensure that all the
environment variables are correctly set before starting the database.
Refer to My Oracle Support Note 373303.1 for more information:

https://support.oracle.com/epmos/faces/DocumentDisplay?id=373303.1

Caution:

You must consult Oracle Support before you implement any changes as
suggested in the My Oracle Support Note 373303.1.

Chapter 1
Environment Variables

1-4

https://support.oracle.com/epmos/faces/DocumentDisplay?id=373303.1

1.2.2 Linux and UNIX Environment Variables
Oracle Database uses operating system environment variables to define system
resources and software locations.

Table 1-2 Environment Variables Used with Oracle Database

Variable Definition

ADA_PATH (IBM AIX on
POWER Systems (64-
Bit) only)

Function: Specifies the directory containing the Ada compiler

Syntax: directory_path

Example: /usr/lpp/powerada

CLASSPATH Function: Used with Java applications. The required setting for this
variable depends on the Java application. Refer to the product
documentation for Java application for more information.

Syntax: Colon-separated list of directories or
files:directory1:directory2:file1:file1

Example: There is no default setting. CLASSPATH must include the
following directories:

$ORACLE_HOME/jdk/jre/lib:$ORACLE_HOME/jlib

DISPLAY Function: Used by X-based tools. Specifies the display device used for
input and output. Refer to the X Window System documentation for
information.

Syntax: hostname:server[.screen]

where hostname is the system name (either IP address or alias),
server is the sequential code number for the server, and screen is the
sequential code number for the screen. If you use a single monitor,
then use the value 0 for both server and screen (0.0).

Note: If you use a single monitor, then screen is optional.

Example:

192.0.2.1:0.0
password:0

HOME Function: The home directory of the user.

Syntax: directory_path

Example: /home/example_home

LANG or LC_ALL Function: Specifies the language and character set used by the
operating system for messages and other output. Oracle tools that are
programmed in Java, such as Oracle Universal Installer and Oracle
Database Configuration Assistant, may also use this variable to
determine the language of their user interface. Refer to the operating
system documentation for more information.

LD_OPTIONS Function: Specifies the default linker options. Refer to the ld man page
for more information about this environment variable.

LPDEST (Oracle
Solaris only)

Function: Specifies the name of the default printer.

Syntax: string

Example: docprinter

Chapter 1
Environment Variables

1-5

Table 1-2 (Cont.) Environment Variables Used with Oracle Database

Variable Definition

LD_LIBRARY_PATH Function: Environment variable to specify the path used to search for
libraries on UNIX and Linux. The environment variable may have a
different name on some operating systems, such as LIBPATH on IBM
AIX on POWER Systems (64-Bit), and SHLIB_PATH on HP-UX.

Syntax: Colon-separated list of directories:
directory1:directory2:directory3

Example:/usr/dt/lib:$ORACLE_HOME/lib

PATH Function: Used by the shell to locate executable programs; must
include the $ORACLE_HOME/bin directory.

Syntax: Colon-separated list of directories:
directory1:directory2:directory3

Example: /bin:/usr/bin:/usr/local/bin:/usr/bin/
X11:$ORACLE_HOME/bin:$HOME/bin:

PRINTER Function: Specifies the name of the default printer.

Syntax: string

Example: docprinter

TEMP, TMP, and TMPDIR Function: Specifies the default directories for temporary files. If set,
then the tools that create temporary files create them in one of these
directories.

Syntax: directory_path

Example:/u02/oracle/tmp

USER (when using
SSH to connect on
HP-UX Itanium
systems)

Function: Specifies the name of the user logging in.

Syntax: string

Example: oracle

1.2.3 Setting a Common Environment
This section describes how to set a common operating system environment by using
the oraenv or coraenv scripts, depending on the default shell:

• For the Bourne, Bash, or Korn shell, use the oraenv command.

• For the C shell, use the coraenv command.

oraenv and coraenv Script Files

The oraenv and coraenv scripts are created during installation. These scripts set
environment variables based on the contents of the oratab file and provide:

• A central means of updating all user accounts with database changes

• A mechanism for switching between databases specified in the oratab file

You may find yourself frequently adding and removing databases from the
development system or your users may be switching between several different Oracle
Databases installed on the same system. You can use the oraenv or coraenv script to
ensure that user accounts are updated and to switch between databases.

Chapter 1
Environment Variables

1-6

Note:

Do not call the oraenv or coraenv script from the Oracle software owner
(typically, oracle) user's shell startup script. Because these scripts prompt for
values, they can prevent the dbstart script from starting a database
automatically when the system starts.

The oraenv or coraenv script is usually called from the user's shell startup file (for
example, .profile or.login). It sets the ORACLE_SID and ORACLE_HOME environment
variables and includes the $ORACLE_HOME/bin directory in the PATH environment variable
setting. When switching between databases, users can run the oraenv or coraenv script
to set these environment variables.

Note:

To run one of these scripts, use the appropriate command:

• coraenv script:

% source /usr/local/bin/coraenv

• oraenv script:

$. /usr/local/bin/oraenv

Local bin Directory

The directory that contains the oraenv, coraenv, and dbhome scripts is called the local bin
directory. All database users must have read access to this directory. Include the path
of the local bin directory PATH environment variable setting for the users. When you run
the root.sh script after installation, the script prompts you for the path of the local bin
directory and automatically copies the oraenv, coraenv, and dbhome scripts to the
directory that you specify. The default local bin directory is /usr/local/bin. If you do
not run the root.sh script, then you can manually copy the oraenv or coraenv and dbhome
scripts from the $ORACLE_HOME/bin directory to the local bin directory.

1.2.4 Setting the System Time Zone
The TZ environment variable sets the time zone. It enables you to adjust the clock for
daylight saving time changes or different time zones.

See Also:

• "ORA_TZFILE" in "Table 1-1"

• Oracle Database Globalization Support Guide and Oracle Database
Administrator's Guide for more information about setting the database
time zone

Chapter 1
Environment Variables

1-7

1.3 Initialization Parameters
These sections provide information about Oracle Database initialization parameters.

Topics:

• ASM_DISKSTRING Initialization Parameter

• DISK_ASYNCH_IO Initialization Parameter (HP-UX)

• PROCESSOR_GROUP_NAME Initialization Parameter

• Managing Diagnostic Data

1.3.1 ASM_DISKSTRING Initialization Parameter

Note:

Only Automatic Storage Management instances support the ASM_DISKSTRING
initialization parameter.

The syntax for assigning a value to the ASM_DISKSTRING initialization parameter is as
follows:

ASM_DISKSTRING = 'path1'[,'path2', . . .]

In this syntax, pathn is the path to a raw device. You can use wildcard characters when
specifying the path.

Table 1-3 lists the platform-specific default values for the ASM_DISKSTRING initialization
parameter.

Table 1-3 Default Values of the ASM_DISKSTRING Initialization Parameter

Platform Default Search String

Oracle Solaris /dev/rdsk/*

Linux /dev/sd*

IBM AIX on POWER
Systems (64-Bit)

/dev/rhdisk*

HP-UX /dev/rdisk*

1.3.2 DISK_ASYNCH_IO Initialization Parameter (HP-UX)
The DISK_ASYNCH_IO initialization parameter determines whether the database files
reside on raw disks or file systems. Asynchronous I/O is available only with Automatic
Storage Management disk group which uses raw partitions as the storage option for
database files. The DISK_ASYNCH_IO parameter can be set to TRUE or FALSE depending on
where the files reside. By default, the value is set to TRUE.

Chapter 1
Initialization Parameters

1-8

Note:

The DISK_ASYNCH_IO parameter must be set to FALSE when the database files
reside on file system. This parameter must be set to TRUE only when the
database files reside on raw partitions.

1.3.3 PROCESSOR_GROUP_NAME Initialization Parameter
PROCESSOR_GROUP_NAME specifies the name of the processor group in which an instance
is running. This parameter instructs Oracle databases to run only on processors which
are a part of the specified operating system processor groups. For NUMA systems, all
System Global Area (SGA) and Program Global Area (PGA) are allocated from the
NUMA nodes associated with the CPUs in this processor group.

PROCESSOR_GROUP_NAME parameter is only supported on Linux x86-64 and Oracle Solaris
11 SRU 4 and later.

On Linux x86-64, the named subset of CPUs is created through a Linux feature called
control groups (cgroups). Cgroups are introduced in Linux kernel version 2.6.24. It is
created by specifying a name and a set of CPUs for the group. When a process is
mapped to a cgroup, it uses only the CPUs associated with the cgroup.

On Oracle Solaris 11 SRU 4, the named subset of CPUs is created through a feature
called resource pools. Each resource pool consists of a name and a set of CPUs.
When a process is mapped to a resource pool, it uses the CPUs associated with the
resource pool.

Note:

Oracle recommends that the PROCESSOR_GROUP_NAME parameter is set only for
databases using a dedicated connection broker. The USE_DEDICATED_BROKER
initialization parameter is used to configure the dedicated connection
brokers.

Related Topics

• Oracle Database Reference

• Oracle Database Reference

1.3.4 Managing Diagnostic Data
Diagnostic data includes the trace files, dumps, and core files to investigate, track, and
resolve problems quickly and effectively.

Related Topics

• Oracle Database Administrator’s Guide

Chapter 1
Initialization Parameters

1-9

2
Stopping and Starting Oracle Software

This chapter describes how to identify Oracle Database processes, and provides basic
information about how to stop and restart them. It also describes how to set up
automatic startup and shutdown of the Oracle Database. It contains the following
sections:

• Stopping and Starting Oracle Processes

• Automating Shutdown and Startup

Note:

When using Oracle Restart, you can use Service Control Utility (SRVCTL), a
command-line interface, to manage Oracle processes (database instance,
listener, Oracle ASM instance). With SRVCTL, you can manage the Oracle
Restart configuration, see the status of processes managed by Oracle
Restart, and start or stop processes such as Oracle Database. SRVCTL is
enhanced to support Oracle Clusterware, and single instance Oracle
databases with Oracle Restart.

See Also:

Oracle Database Administrator’s Guide and Oracle Real Application Clusters
Administration and Deployment Guide for more information about SRVCTL
commands.

2.1 Stopping and Starting Oracle Processes
This section describes how to stop and start Oracle processes. It contains the
following topics:

• Stopping and Starting Oracle Database and Oracle Automatic Storage
Management Instances

• Stopping and Starting Oracle Restart

2.1.1 Stopping and Starting Oracle Database and Oracle Automatic
Storage Management Instances

This section describes how to stop and start Oracle Database and Oracle Automatic
Storage Management instances and contains the following topics:

• Stopping an Oracle Database or Oracle Automatic Storage Management Instance

2-1

• Restarting an Oracle Database or Oracle Automatic Storage Management
Instance

2.1.1.1 Stopping an Oracle Database or Oracle Automatic Storage
Management Instance

Caution:

Do not stop an Oracle Automatic Storage Management instance until you
have stopped all Oracle Database instances that use Oracle Automatic
Storage Management instance to manage their storage.

To stop an Oracle Database or Oracle Automatic Storage Management instance:

1. Run the following commands to identify the SID and Oracle home directory for the
instance that must be shut down:

On Oracle Solaris:

$ cat /var/opt/oracle/oratab

On other operating systems:

$ cat /etc/oratab

The oratab file contains lines similar to the following, which identify the SID and
corresponding Oracle home directory for each database or Oracle Automatic
Storage Management instance on the system:

$ORACLE_SID:$ORACLE_HOME:<N/Y>

Note:

Oracle recommends that you use the plus sign (+) as the first character
in the SID of Oracle Automatic Storage Management instances.

2. Run the oraenv or coraenv script, depending on the default shell, to set the
environment variables for the instance that must be shut down:

• Bourne, Bash, or Korn shell:

$. /usr/local/bin/oraenv

• C shell:

% source /usr/local/bin/coraenv

When prompted, specify the SID for the instance.

3. Run the following commands to shut down the instance:

$ sqlplus
SQL> CONNECT SYS AS SYSDBA
Enter password: sys_password
SQL> SHUTDOWN NORMAL

Chapter 2
Stopping and Starting Oracle Processes

2-2

After the instance shuts down, you can quit SQL*Plus.

2.1.1.2 Restarting an Oracle Database or Oracle Automatic Storage
Management Instance

Caution:

If the database instance uses Oracle Automatic Storage Management for
storage management, then you must start the Oracle Automatic Storage
Management instance before you start the database instance.

To restart an Oracle Database or Oracle Automatic Storage Management instance:

1. Repeat steps 1 and 2, if required, to set the ORACLE_SID and ORACLE_HOME
environment variables to identify the SID and Oracle home directory for the
instance you want to start.

2. Run the following commands to start the instance:

$ sqlplus
SQL> CONNECT SYS AS SYSDBA
Enter password: sys_password
SQL> STARTUP

After the instance starts, you can exit from SQL*Plus.

2.1.2 Stopping and Starting Oracle Restart
To stop or start Oracle Restart, run the following command:

• Start: This option is used to start Oracle Restart

Syntax and Options:

crsctl start has

• Stop: This option is used to stop Oracle Restart

Syntax and Options:

crsctl stop has

See Also:

Oracle Database Administrator's Guide for more information about the
srvctl commands

2.2 About Automating Database Shutdown and Startup
Oracle recommends that you configure the system to automatically start Oracle
Database when the system starts, and to automatically shut it down when the system

Chapter 2
About Automating Database Shutdown and Startup

2-3

shuts down. Automating database startup and shutdown guards against incorrect
database shutdown.

To automate database startup and shutdown, use the dbstart and dbshut scripts,
which are located in the $ORACLE_HOME/bin directory. The scripts refer to the same
entries in the oratab file, which are applied on the same set of databases. You cannot,
for example, have the dbstart script automatically start sid1, sid2, and sid3, and have
the dbshut script shut down only sid1. However, you can specify that the dbshut script
shuts down a set of databases while the dbstart script is not used at all. To do this,
include a dbshut entry in the system shutdown file, but do not include the dbstart entry
in the system startup files.

See Also:

The init command in the operating system documentation for more
information about system startup and shutdown procedures

2.2.1 Automating Database Startup and Shutdown
To automate database startup and shutdown by using the dbstart and dbshut scripts:

1. Log in as the root user.

2. Edit the oratab file for the platform.

To open the file, use one of the following commands:

• On Oracle Solaris:

vi /var/opt/oracle/oratab

• On IBM AIX on POWER Systems (64-Bit) and Linux:

vi /etc/oratab

Database entries in the oratab file are displayed in the following format:

$ORACLE_SID:$ORACLE_HOME:<N|Y>

In this example, the values Y and N specify whether you want the scripts to start or
shut down the database, respectively. For each database for which you want to
automate shutdown and startup, first determine the instance identifier (SID) for
that database, which is identified by the SID in the first field. Then, change the last
field for each to Y.

You can set dbstart to autostart a single-instance database which uses an
Automatic Storage Management installation auto-started by Oracle Clusterware.
This is the default behavior for an Automatic Storage Management cluster. To do
this, you must change the oratab entry of the database and the Automatic Storage
Management installation to use a third field with the value W and N, respectively.
These values specify that dbstart auto-starts the database only after the
Automatic Storage Management instance is started.

Chapter 2
About Automating Database Shutdown and Startup

2-4

Note:

If you add new database instances to the system and automate the
startup for them, then you must edit the entries for those instances in the
oratab file.

3. Change directory to one of the following, depending on the operating system:

Platform Initialization File Directory

Linux and Oracle Solaris /etc/init.d

IBM AIX on POWER
Systems (64-Bit)

/etc

4. Create a file called dbora, and copy the following lines into this file:

Note:

Change the value of the ORA_HOME environment variable to specify the
Oracle home directory for the installation. Change the value of the
ORA_OWNER environment variable to the user name of the owner of the
database installed in the Oracle home directory (typically, oracle).

#! /bin/sh
description: Oracle auto start-stop script.
#
Set ORA_HOME to be equivalent to the $ORACLE_HOME
from which you wish to execute dbstart and dbshut;
#
Set ORA_OWNER to the user id of the owner of the
Oracle database in ORACLE_HOME.

ORA_HOME=<Type your ORACLE_HOME in full path here>
ORA_OWNER=<Type your Oracle account name here>

case "$1" in
'start')
 # Start the Oracle databases:
 # The following command assumes that the oracle login
 # will not prompt the user for any values
 # Remove "&" if you don't want startup as a background process.
 su - $ORA_OWNER -c "$ORA_HOME/bin/dbstart $ORA_HOME" &
 touch /var/lock/subsys/dbora
 ;;

'stop')
 # Stop the Oracle databases:
 # The following command assumes that the oracle login
 # will not prompt the user for any values
 su - $ORA_OWNER -c "$ORA_HOME/bin/dbshut $ORA_HOME" &
 rm -f /var/lock/subsys/dbora
 ;;
esac

Chapter 2
About Automating Database Shutdown and Startup

2-5

Note:

This script can only stop Oracle Net listener for which a password has
not been set. In addition, if the listener name is not the default name,
LISTENER, then you must specify the listener name in the stop and start
commands:

$ORACLE_HOME/bin/lsnrctl {start|stop} listener_name

5. Change the group of the dbora file to the OSDBA group (typically dba), and set the
permissions to 750:

chgrp dba dbora
chmod 750 dbora

6. Create symbolic links to the dbora script in the appropriate run-level script
directories, as follows:

Platform Symbolic Links Commands

Oracle Solaris # ln -s /etc/init.d/dbora /etc/rc0.d/K01dbora
ln -s /etc/init.d/dbora /etc/rc3.d/S99dbora

Linux # ln -s /etc/init.d/dbora /etc/rc.d/rc0.d/K01dbora
ln -s /etc/init.d/dbora /etc/rc.d/rc3.d/S99dbora
ln -s /etc/init.d/dbora /etc/rc.d/rc5.d/S99dbora

IBM AIX on
POWER
Systems (64-
Bit)

ln -s /etc/dbora /etc/rc.d/rc2.d/S99dbora
ln -s /etc/dbora /etc/rc.d/rc0.d/K01dbora

Chapter 2
About Automating Database Shutdown and Startup

2-6

3
Configuring Oracle Database

This chapter describes how to configure Oracle Database for Oracle products. It
contains the following sections:

• Using Configuration Assistants

• Relinking Executables

3.1 Using Configuration Assistants
Oracle Database software is supplied with configuration assistants that you can use to
perform various database administration operations.

This section contains the following topics:

• Using Oracle Net Configuration Assistant

• Using Oracle Database Upgrade Assistant

• Using Oracle Database Configuration Assistant

3.1.1 Using Oracle Net Configuration Assistant
Oracle Net Configuration Assistant enables you to configure basic network
components during installation, including listener names and protocol addresses,
naming methods, net service names in tnsnames.ora file, and directory server usage.

After installation is complete, you can use Oracle Net Configuration Assistant to create
a more detailed configuration by entering the following command:

$ $ORACLE_HOME/bin/netca

Note:

When you use DBCA to create a database, it automatically updates the
network configuration files to include information for the new database.

3.1.2 Using Oracle Database Upgrade Assistant
Oracle Database Upgrade Assistant (DBUA) interactively guides you through a
database upgrade and configures the database for the new release. DBUA automates
the upgrade by performing all tasks normally performed manually. DBUA makes
recommendations for configuration options such as tablespaces and the online redo
log.

To start DBUA, run the following command:

$ $ORACLE_HOME/bin/dbua

3-1

For information about the command-line options available with DBUA, use the -help or
-h command-line arguments. For example:

$ $ORACLE_HOME/bin/dbua -help

Related Topics

• Oracle Database Upgrade Guide

3.1.3 Using Oracle Database Configuration Assistant
Oracle Database Configuration Assistant (DBCA) is a graphical user interface that
assists you in creating and configuring a default or customized database. It also
enables you to configure an existing database to add Oracle Database features, and
create Oracle Automatic Storage Management disk groups. DBCA also generates a
set of shell and SQL scripts that you can inspect, modify, and run at a later time to
create a database.

To start DBCA, run the following command:

$ $ORACLE_HOME/bin/dbca

For information about the command-line options available with DBCA, use the -help or
-h command-line arguments. For example:

$ $ORACLE_HOME/bin/dbca -help

3.2 Relinking Executables
You can relink the product executables manually by using the relink shell script
located in the $ORACLE_HOME/bin directory. You must relink the product executables
every time you apply an operating system patch or after an operating system upgrade.

Note:

Before relinking executables, you must shut down all the relinking
executables which run in the Oracle home directory. In addition, shut down
applications linked with Oracle shared libraries. The relink script takes all
and as_installed as arguments. If you do not specify any argument, then the
all argument is considered.

Depending on the products that have been installed in the Oracle home directory, the
relink script relinks all Oracle product executables.

See Also:

Oracle Database Installation Guide for Linux for more information about how
to use the relink script with Automatic Storage Manager

To relink the product executables, run the following command:

Chapter 3
Relinking Executables

3-2

$ relink

Chapter 3
Relinking Executables

3-3

4
Administering SQL*Plus

This chapter describes how to administer SQL*Plus. It contains the following sections:

• Administering Command-Line SQL*Plus

• Using Command-Line SQL*Plus

• SQL*Plus Restrictions

Related Topics

• SQL*Plus User's Guide and Reference

4.1 Administering Command-Line SQL*Plus
This section describes how to administer command-line SQL*Plus. In the examples,
SQL*Plus replaces the question mark (?) with the value of the ORACLE_HOME
environment variable.

• Using Setup Files

• Using the PRODUCT_USER_PROFILE Table

• Using Oracle Database Sample Schemas

• Installing and Removing SQL*Plus Command-Line Help

4.1.1 Using Setup Files
When you start SQL*Plus, it runs the glogin.sql site profile setup file and then runs the
login.sql user profile setup file.

Using the Site Profile File

The global site profile file is $ORACLE_HOME/sqlplus/admin/glogin.sql. If a site profile
already exists at this location, then it is overwritten when you install SQL*Plus. If
SQL*Plus is removed, then the site profile file is also removed.

Using the User Profile File

The user profile file is login.sql. SQL*Plus looks for this file in the current directory,
and then in the directories specified by the SQLPATH environment variable. The value of
this environment variable is a colon-separated list of directories. SQL*Plus searches
these directories for the login.sql file in the order that they are listed in the SQLPATH
environment variable.

The options set in the login.sql file override those set in the glogin.sql file.

4-1

See Also:

SQL*Plus User's Guide and Reference for more information about profile
files

4.1.2 Using the PRODUCT_USER_PROFILE Table
Oracle Database provides the PRODUCT_USER_PROFILE table that you can use to
disable the specified SQL and SQL*Plus commands. This table is automatically
created when you choose an installation type that installs a preconfigured database.

See Also:

Oracle Database Installation Guide for more information about installation
options

To re-create the PRODUCT_USER_PROFILE table, run the $ORACLE_HOME/sqlplus/
admin/pupbld.sql script in the SYSTEM schema. For example, run the following
commands, where SYSTEM_PASSWORD is the password of the SYSTEM user:

$ sqlplus
SQL> CONNECT SYSTEM
Enter password: system_password
SQL> @?/sqlplus/admin/pupbld.sql

You can also re-create the PRODUCT_USER_PROFILE table manually in the
SYSTEM schema by using the $ORACLE_HOME/bin/pupbld shell script. This script
prompts for the SYSTEM password. To run the pupbld script without interaction, set
the SYSTEM_PASS environment variable to the SYSTEM user name and password.

4.1.3 Using Oracle Database Sample Schemas
When you install Oracle Database or use Oracle Database Configuration Assistant to
create a database, you can choose to install Oracle Database Sample Schemas.

Related Topics

• Oracle Database Sample Schemas

4.1.4 Installing and Removing SQL*Plus Command-Line Help
This section describes how to install and remove the SQL*Plus command-line Help.

• Installing SQL*Plus Command-Line Help

• Removing SQL*Plus Command-Line Help

Related Topics

• SQL*Plus User's Guide and Reference

Chapter 4
Administering Command-Line SQL*Plus

4-2

4.1.4.1 Installing SQL*Plus Command-Line Help
There are three ways to install the SQL*Plus command-line Help:

• Complete an installation that installs a preconfigured database.

When you install a preconfigured database as part of an installation, SQL*Plus
automatically installs the SQL*Plus command-line Help in the SYSTEM schema.

• Install the command-line Help manually in the SYSTEM schema by using
the $ORACLE_HOME/bin/helpins shell script.

The helpins script prompts for the SYSTEM password. To run this script without
interaction, set the SYSTEM_PASS environment variable to the SYSTEM user name
and password. For example:

– Bourne, Bash, or Korn shell:

$ SYSTEM_PASS=SYSTEM/system_password; export SYSTEM_PASS

– C shell:

% setenv SYSTEM_PASS SYSTEM/system_password

• Install the command-line Help manually in the SYSTEM schema by using
the $ORACLE_HOME/sqlplus/admin/help/helpbld.sql script.

For example, run the following commands, where system_password is the password
of the SYSTEM user:

$ sqlplus
SQL> CONNECT SYSTEM
Enter password: system_password
SQL> @?/sqlplus/admin/help/helpbld.sql ?/sqlplus/admin/help helpus.sql

Note:

Both the helpins shell script and the helpbld.sql script drop existing
command-line Help tables before creating new tables.

4.1.4.2 Removing SQL*Plus Command-Line Help
To manually drop the SQL*Plus command-line Help tables from the SYSTEM schema,
run the $ORACLE_HOME/sqlplus/admin/help/helpdrop.sql script. To do this, run the
following commands, where system_password is the password of the SYSTEM user:

$ sqlplus
SQL> CONNECT SYSTEM
Enter password: system_password
SQL> @?/sqlplus/admin/help/helpdrop.sql

4.2 Using Command-Line SQL*Plus
This section describes how to use command-line SQL*Plus. It contains the following
topics:

• Using a System Editor from SQL*Plus

Chapter 4
Using Command-Line SQL*Plus

4-3

• Running Operating System Commands from SQL*Plus

• Interrupting SQL*Plus

• Using the SPOOL Command

4.2.1 Using a System Editor from SQL*Plus
If you run an ED or EDIT command at the SQL*Plus prompt, then the system starts an
operating system editor, such as ed, emacs, ned, or vi. However, the PATH environment
variable must include the directory where the editor executable is located.

The HISTORY command enables users to run, edit, or delete previously used SQL*Plus,
SQL, or PL/SQL commands from the history list in the current session. You can enable
or disable the history of commands issued in the current SQL*Plus session.

When you start the editor, the current SQL buffer is placed in the editor. When you exit
the editor, the changed SQL buffer is returned to SQL*Plus.

You can specify which editor should start by defining the SQL*Plus _EDITOR variable.
You can define this variable in the glogin.sql site profile or the login.sql user profile.
Alternatively, you can define it during the SQL*Plus session. For example, to set the
default editor to vi, run the following command:

SQL> DEFINE _EDITOR=vi

If you do not set the _EDITOR variable, then the value of either the EDITOR or the VISUAL
environment variable is used. If both environment variables are set, then the value of
the EDITOR variable is used. If _EDITOR, EDITOR, and VISUAL are not specified, then the
default editor is vi. The defined editor is used in the edit option of the HISTORY
command. Consider the following SQL statements:

SQL> hist
1 select * from dual;
2 desc dual

To open the first entry in the above SQL statements in the vi editor, use the following
command:

SQL> hist 1 edit

When you start the editor, SQL*Plus uses the afiedt.buf temporary file to pass text to
the editor. You can use the SET EDITFILE command to specify a different file name. For
example:

SQL> SET EDITFILE /tmp/myfile.sql

SQL*Plus does not delete the temporary file.

4.2.2 Running Operating System Commands from SQL*Plus
Using the HOST command or an exclamation point (!) as the first character after the
SQL*Plus prompt causes subsequent characters to be passed to a subshell. The SHELL
environment variable sets the shell used to run operating system commands. The
default shell is the Bourne shell. If the shell cannot be run, then SQL*Plus displays an
error message.

To return to SQL*Plus, run the exit command or press Ctrl+D.

Chapter 4
Using Command-Line SQL*Plus

4-4

For example, to run a single command, use the following command syntax:

SQL> ! command

In this example, command represents the operating system command that you want to
run.

To run multiple operating system commands from SQL*Plus, run the HOST or !
command. Press Enter to return to the operating system prompt.

4.2.3 Interrupting SQL*Plus
While running SQL*Plus, you can stop the scrolling record display and terminate a
SQL statement by pressing Ctrl+C.

4.2.4 Using the SPOOL Command
The default file name extension of files generated by the SPOOL command is .lst. To
change this extension, specify a spool file containing a period (.). For example:

SQL> SPOOL query.txt

4.3 SQL*Plus Restrictions
This section describes the following SQL*Plus restrictions:

• Resizing Windows

• Return Codes

• Hiding the Password

4.3.1 Resizing Windows
The default values for the SQL*Plus LINESIZE and PAGESIZE system variables do not
automatically adjust for the window size. If the window size is changed, then you must
set the LINESIZE and PAGESIZE system variables.

4.3.2 Return Codes
Operating system return codes use only one byte, which is not enough space to return
an Oracle error code. The range for a return code is 0 to 255.

4.3.3 Hiding the Password
If you pass the password on the command line or set the SYSTEM_PASS environment
variable to the user name and password of the SYSTEM user, then the output of the ps
command may display this information. To prevent unauthorized access, enter the
SYSTEM password only when prompted by SQL*Plus.

To automatically run a script, consider using an authentication method that does not
require you to store a password. For example, externally authenticated logins to
Oracle Database. If you have a low-security environment, then you must consider
using the operating system pipes in script files to pass a password to SQL*Plus. For
example:

Chapter 4
SQL*Plus Restrictions

4-5

$ echo system_password | sqlplus SYSTEM @MYSCRIPT

Alternatively, run the following commands:

$ sqlplus <<EOF
SYSTEM/system_password
SELECT ...
EXIT
EOF

In the preceding examples, system_password is the password of the SYSTEM user.

Chapter 4
SQL*Plus Restrictions

4-6

5
Configuring Oracle Net Services

This chapter describes how to configure Oracle Net Services. It contains the following
sections:

• Locating Oracle Net Services Configuration Files

• Using Adapters Utility

• Using Oracle Protocol Support

• Setting Up the Listener for TCP/IP or TCP/IP with Secure Sockets Layer

Related Topics

• Oracle Database Net Services Administrator's Guide

5.1 Locating Oracle Net Services Configuration Files
Oracle Net Services configuration files are typically, but not always, located in
the $ORACLE_HOME/network/admin directory. Depending on the type of file, Oracle Net
uses a different search order to locate the file.

The search order for the sqlnet.ora and ldap.ora files is as follows:

1. The directory specified by the TNS_ADMIN environment variable, if this environment
variable is set

2. The $ORACLE_HOME/network/admin directory

The search order for the cman.ora, listener.ora, and tnsnames.ora files is as follows:

1. The directory specified by the TNS_ADMIN environment variable, if this environment
variable is set

2. One of the following directories:

• On Oracle Solaris:

/var/opt/oracle

• On other platforms:

/etc

3. The $ORACLE_HOME/network/admin directory

For some system-level configuration files, users may have a corresponding user-level
configuration file stored in their home directory. The settings in the user-level file
override the settings in the system-level file. The following table lists the system-level
configuration files and the corresponding user-level configuration files:

System-Level Configuration File User-Level Configuration File

sqlnet.ora $HOME/.sqlnet.ora

tnsnames.ora $HOME/.tnsnames.ora

5-1

Example 5-1 Sample Configuration Files

The $ORACLE_HOME/network/admin/samples directory contains samples of the cman.ora,
listener.ora, sqlnet.ora, and tnsnames.ora configuration files.

Note:

The cman.ora file is installed only if you select Connection Manager as part of
a custom option during a client custom installation.

5.2 Using Adapters Utility
The adapters utility displays the transport protocols, naming methods, and Oracle
Advanced Security options that Oracle Database supports on the system.

See Also:

Oracle Database Net Services Administrator's Guide for more information
about the adapters utility

5.3 Using Oracle Protocol Support
Oracle protocol support is a component of Oracle Net. It includes the following:

• IPC Protocol Support

• TCP/IP Protocol Support

• TCP/IP with Secure Sockets Layer Protocol Support

Each of the IPC, TCP/IP, and TCP/IP with Secure Sockets Layer protocol support
have an address specification that is used in the Oracle Net Services configuration
files and in the DISPATCHER initialization parameter. The following sections describe the
address specifications for each of the protocol supports.

Related Topics

• Oracle Database Net Services Administrator's Guide

5.3.1 IPC Protocol Support
The IPC protocol support can be used only when the client program and Oracle
Database are installed on the same system. This protocol support requires a listener.
It is installed and linked to all client tools and the oracle executable.

The IPC protocol support requires an address specification in the following format:

(ADDRESS = (PROTOCOL=IPC)(KEY=key))

The following table describes the parameters used in this address specification:

Chapter 5
Using Adapters Utility

5-2

Parameter Description

PROTOCOL The protocol to be used. The value is IPC. It is not case-sensitive.

KEY Any name that is different from any other name used for an IPC KEY on the
same system.

The following is a sample IPC protocol address:

(ADDRESS= (PROTOCOL=IPC)(KEY=EXTPROC))

5.3.2 TCP/IP Protocol Support
TCP/IP is the standard communication protocol used for client/server communication
over a network. The TCP/IP protocol support enables communication between client
programs and Oracle Database, whether they are installed on the same or different
systems. If the TCP/IP protocol is installed on the system, then the TCP/IP protocol
support is installed and linked to all client tools and to the oracle executable.

The TCP/IP protocol support requires an address specification in the following format:

(ADDRESS = (PROTOCOL=TCP)(HOST=hostname)(PORT=port))

The following table describes the parameters used in this address specification:

Parameter Description

PROTOCOL The protocol support to be used. The value is TCP. It is not case-
sensitive.

HOST The host name or the host IP address.

PORT The TCP/IP port. Specify the port as either a number or the alias name
mapped to the port in the /etc/services file. Oracle recommends a value
of 1521.

The following is a sample TCP/IP protocol address:

(ADDRESS= (PROTOCOL=TCP)(HOST=MADRID)(PORT=1521))

5.3.3 TCP/IP with Secure Sockets Layer Protocol Support
The TCP/IP with Secure Sockets Layer protocol support enables an Oracle application
on a client to communicate with remote Oracle Database instances through TCP/IP
and Secure Sockets Layer.

The TCP/IP with Secure Sockets Layer protocol support requires an address
specification in the following format:

(ADDRESS = (PROTOCOL=TCPS)(HOST=hostname)(PORT=port))

The following table describes the parameters used in this address specification:

Parameter Description

PROTOCOL The protocol to be used. The value is TCPS. It is not case-sensitive.

HOST The host name or the host IP address.

Chapter 5
Using Oracle Protocol Support

5-3

Parameter Description

PORT The TCP/IP with Secure Sockets Layer port. Specify the port as
either a number or the alias name mapped to the port in the /etc/
services file. Oracle recommends a value of 2484.

The following is a sample TCP/IP with Secure Sockets Layer protocol address:

(ADDRESS= (PROTOCOL=TCPS)(HOST=MADRID)(PORT=2484))

5.4 Setting Up the Listener for TCP/IP or TCP/IP with
Secure Sockets Layer

Oracle recommends that you reserve a port for the listener in the /etc/services file of
each Oracle Net Services node on the network. The default port is 1521. The entry
lists the listener name and the port number. For example:

oraclelistener 1521/tcp

In this example, oraclelistener is the name of the listener as defined in the
listener.ora file. Reserve multiple ports if you intend to start multiple listeners.

If you intend to use Secure Sockets Layer, then you should define a port for TCP/IP
with Secure Sockets Layer in the /etc/services file. Oracle recommends a value of
2484. For example:

oraclelistenerssl 2484/tcps

In this example, oraclelistenerssl is the name of the listener as defined in the
listener.ora file. Reserve multiple ports if you intend to start multiple listeners.

Chapter 5
Setting Up the Listener for TCP/IP or TCP/IP with Secure Sockets Layer

5-4

6
Using Oracle Precompilers and the Oracle
Call Interface

This chapter describes how to use Oracle precompilers and the Oracle Call Interface

Topics:

• Overview of Oracle Precompilers

• Bit-Length Support for Client Applications

• Pro*C/C++ Precompiler

• Pro*COBOL Precompiler

• Pro*FORTRAN Precompiler

• SQL*Module for ADA

• OCI and OCCI

• Running Oracle JDBC/OCI Programs with a 64-Bit Driver

• Custom Make Files

• Correcting Undefined Symbols

• Multithreaded Applications

• Using Signal Handlers

• XA Functionality

6.1 Overview of Oracle Precompilers
Oracle precompilers are application development tools that are used to combine SQL
statements for an Oracle Database with programs written in a high-level language.
Oracle precompilers are compatible with ANSI SQL and are used to develop and open
customized applications that run with Oracle Database or any other ANSI SQL
database management system.

This section contains the following topics:

• Precompiler Configuration Files

• Relinking Precompiler Executables

• Issues Common to All Precompilers

• Static and Dynamic Linking

• Client Shared and Static Libraries

6-1

Note:

ORACLE_HOME in this section refers to ORACLE_HOME that is created while installing
Oracle Database Client 18c by using the Administrator Install type.

6.1.1 Precompiler Configuration Files
Configuration files for the Oracle precompilers are located in the $ORACLE_HOME/precomp/
admin directory.

The following table lists the names of the configuration files for each precompiler.

Table 6-1 System Configuration Files for Oracle Precompilers

Product Configuration File

Pro*C/C++ pcscfg.cfg

Pro*COBOL pcbcfg.cfg

Pro*FORTRAN (IBM AIX on POWER Systems (64-Bit), HP-UX, and
Oracle Solaris)

pccfor.cfg

Object Type Translator ottcfg.cfg

SQL*Module for Ada (IBM AIX on POWER Systems (64-Bit)) pmscfg.cfg

6.1.2 Relinking Precompiler Executables
Use the $ORACLE_HOME/precomp/lib/ins_precomp.mk make file to relink all precompiler
executables. To manually relink a particular precompiler executable, enter the
following command:

$ make -f ins_precomp.mk relink exename = executable_name

This command creates the new executable in the $ORACLE_HOME/precomp/lib directory,
and then moves it to the $ORACLE_HOME/bin directory.

In the preceding example, replace executable with one of the product executables
listed in Table 6-2.

The following table lists the executables for Oracle Precompilers:

Table 6-2 Executables for Oracle Precompilers

Product Executable

Pro*FORTRAN 32-bit (Oracle Solaris, HP-UX and IBM AIX on
POWER Systems (64-Bit))

profor

Pro*COBOL 32-bit (Oracle Solaris, HP-UX, and IBM AIX on
POWER Systems (64-Bit))

procob

Pro*COBOL (Oracle Solaris, HP-UX, and IBM AIX on POWER
Systems (64-Bit))

procob or rtsora

Pro*C/C++ 32 bit (HP-UX) proc

Chapter 6
Overview of Oracle Precompilers

6-2

Table 6-2 (Cont.) Executables for Oracle Precompilers

Product Executable

Pro*FORTRAN (HP-UX) profor

SQL*Module for Ada (IBM AIX on POWER Systems (64-Bit)) modada

6.1.3 Issues Common to All Precompilers
The following issues are common to all precompilers:

• Uppercase to Lowercase Conversion

In languages other than C, the compiler converts an uppercase function or
subprogram name to lowercase. This can cause a No such user exists error
message. If you receive this error message, then verify that the case of the
function or subprogram name in the option file matches the case used in the
IAPXTB table.

• Vendor Debugger Programs

Precompilers and vendor-supplied debuggers can be incompatible. Oracle does
not guarantee that a program run using a debugger performs the same way when
it is run without the debugger.

• Value of IRECLEN and ORECLEN parameters

The IRECLEN and ORECLEN parameters do not have maximum values.

6.1.4 Static and Dynamic Linking
You can statically or dynamically link Oracle libraries with precompiler and OCI or
OCCI applications. With static linking, the libraries and objects of the whole application
are linked into a single executable program. As a result, application executables can
become very large.

With dynamic linking, the executing code is partly stored in the executable program
and partly stored in libraries that are linked dynamically by the application at run time.
Libraries that are linked at run time are called dynamic or shared libraries. The benefits
of dynamic linking are:

• Reduced disk space requirements: Multiple applications or calls to the same
application can use the same dynamic libraries.

• Reduced main memory requirements: The same dynamic library image is loaded
into the main memory only once, and it can be shared by multiple applications.

6.1.5 Client Shared and Static Libraries
The client shared and static libraries are located in $ORACLE_HOME/lib. If you use the
Oracle-provided demo_product.mk file to link an application, then the client shared library
is linked by default.

If the shared library path environment variable setting does not include the directory
that contains the client shared library, then you may see an error message similar to
one of the following lines when starting an executable:

Chapter 6
Overview of Oracle Precompilers

6-3

Cannot load library libclntsh.a
cannot open shared library: .../libclntsh.sl.10.1
libclntsh.so.10.1: can't open file: errno=2
can't open library: .../libclntsh.dylib.10.1
Cannot map libclntsh.so

To avoid this error, set the shared library path environment variable to specify the
appropriate directory. The following table shows sample settings for this environment
variable name. If the platform supports both 32-bit and 64-bit applications, then ensure
that you specify the correct directory, depending on the application that you want to
run.

Platform Environment Variable Sample Setting

Oracle Solaris (32-bit and 64-bit
applications) and Linux

LD_LIBRARY_PATH $ORACLE_HOME/lib

IBM AIX on POWER Systems
(32-bit and 64–bit applications)

LIBPATH $ORACLE_HOME/lib

HP-UX (32-bit applications) SHLIB_PATH $ORACLE_HOME/lib

HP-UX (64-bit applications) LD_LIBRARY_PATH $ORACLE_HOME/lib

The client shared library is created automatically during installation. If you must re-
create it, then complete the following procedure:

1. Quit all client applications that use the client shared library, including all Oracle
client applications such as SQL*Plus and Oracle Recovery Manager.

2. Log in as the oracle user, and run the following command:

$ $ORACLE_HOME/bin/genclntsh

Non-threaded Client Shared Library

Note:

The information in this section applies to HP-UX systems.

On HP-UX, you can use a non-threaded client shared library. However, you cannot
use this library with any OCI application that uses or has a dependency on threads.

To use this library for applications that do not use threads, run the following command
to build the OCI application for 32 and 64-bit:

$ make -f demo_rdbms.mk build_nopthread EXE=oci02 OBJS=oci02.o

6.1.6 Generating the Client Static Library
To link applications to the client static library, you must generate it first.

The client static library (libclntst12.a) is not generated during an Oracle Database
installation. To link the applications to the client static library, you must first generate it:

1. Switch the user to the Oracle installation owner (oracle).

Chapter 6
Overview of Oracle Precompilers

6-4

2. Set the ORACLE_HOME environment variable to specify the Oracle home directory
used by the Oracle Database installation. For example:

• Bourne, Bash, or Korn shell:

$ ORACLE_HOME=/u01/app/oracle/product/18.0.0/dbhome_1
$ export ORACLE_HOME

• C shell:

% setenv ORACLE_HOME /u01/app/oracle/product/18.0.0/dbhome_1

3. Enter the following command:

$ $ORACLE_HOME/bin/genclntst

6.2 Bit-Length Support for Client Applications
The client application type (32-bit or 64-bit) is supported on the following platforms:

• Oracle Solaris

• Linux x86-64

• IBM: Linux on System z

• IBM AIX on POWER Systems (64-Bit)

• HP-UX Itanium

The following table lists the 32-bit and 64-bit client shared libraries:

Platform 32-Bit Client Shared Library 64-Bit Client Shared Library

Oracle Solaris, Linux
x86-64, and IBM:
Linux on System z

$ORACLE_HOME/lib/libclntsh.so $ORACLE_HOME/lib/
libclntsh.so

IBM AIX on POWER
Systems (64-Bit)

$ORACLE_HOME/lib/libclntsh.a
$ORACLE_HOME/lib/libclntsh.so

$ORACLE_HOME/lib/
libclntsh.a
$ORACLE_HOME/lib/
libclntsh.so

HP-UX Itanium $ORACLE_HOME/lib/libclntsh.sl $ORACLE_HOME/lib/
libclntsh.sl

To implement a mixed word-size installation:

1. Run the following command to generate the 32-bit and 64-bit client shared
libraries:

$ $ORACLE_HOME/bin/genclntsh

2. Include the paths of the required 32-bit and 64-bit client shared libraries in one of
the following environment variables, depending on the platform:

Platform Environment Variable

Oracle Solaris, Linux x86-64, IBM:
Linux on System z, and HP-UX

LD_LIBRARY_PATH

IBM AIX on POWER Systems (64-Bit) LIBPATH

Chapter 6
Bit-Length Support for Client Applications

6-5

Platform Environment Variable

HP-UX (32-bit client applications) SHLIB_PATH

Building 32-Bit Pro*C and OCI Customer Applications

If the operating system supports both 32-bit and 64-bit Pro*C and Oracle Call Interface
(OCI) customer applications, then you can find more information about building 32-bit
Pro*C and OCI applications in the following files:

For Information About. . . Refer to the Following Make Files. . .

Building 32-bit Pro*C
applications

$ORACLE_HOME/precomp/demo/proc/demo_proc32.mk

Building 32-bit OCI
applications

$ORACLE_HOME/rdbms/demo/demo_rdbms32.mk

6.3 Pro*C/C++ Precompiler
Before you use the Pro*C/C++ precompiler, verify that the correct version of the
operating system compiler is properly installed.

See Also:

• Oracle Database Installation Guide for information about supported
compiler versions

• Pro*C/C++ Programmer's Guide for information about the Pro*C/C++
precompiler and interface features

This section contains the following topics:

• Pro*C/C++ Demonstration Programs

• Pro*C/C++ User Programs

6.3.1 Pro*C/C++ Demonstration Programs
Demonstration programs are provided to show the features of the Pro*C/C++
precompiler. There are three types of demonstration programs: C, C++, and Object
programs. All demonstration programs are located in the $ORACLE_HOME/precomp/demo/
proc directory. By default, all programs are dynamically linked with the client shared
library.

To run the demonstration programs, the programs require the demonstration tables
created by the $ORACLE_HOME/sqlplus/demo/demobld.sql script to exist in the JONES
schema with a password.

Chapter 6
Pro*C/C++ Precompiler

6-6

Note:

You must unlock the JONES account and set the password before creating
the demonstrations.

Use the demo_proc.mk make file, which is located in the $ORACLE_HOME/precomp/demo/
proc/ directory, to create the demonstration programs. For example, to precompile,
compile, and link the sample1 demonstration program, run the following command:

$ make -f demo_proc.mk sample1

Note:

On IBM AIX on POWER Systems (64-Bit), to ensure that the demonstration
programs compile correctly, include the -r option of the make command in the
following examples. For example:

$ make -r -f demo_proc.mk sample1

To create all the C demonstration programs for Pro*C/C++, run the following
command:

$ make -f demo_proc.mk samples

To create all the C++ demonstration programs for Pro*C/C++, run the following
command:

$ make -f demo_proc.mk cppsamples

To create all the Object demonstration programs for Pro*C/C++, run the following
command:

$ make -f demo_proc.mk object_samples

Some demonstration programs require you to run a SQL script, located in
the $ORACLE_HOME/precomp/demo/sql directory. If you do not run the script, then a
message prompting you to run it is displayed.

To build a demonstration program and run the corresponding SQL script, include the
make macro argument RUNSQL=run at the command line. For example, to create the
sample9 demonstration program and run the required $ORACLE_HOME/precomp/demo/sql/
sample9.sql script, run the following command:

$ make -f demo_proc.mk sample9 RUNSQL=run

To create all the Object demonstration programs and run all the required SQL scripts,
run the following command:

$ make -f demo_proc.mk object_samples RUNSQL=run

Chapter 6
Pro*C/C++ Precompiler

6-7

6.3.2 Pro*C/C++ User Programs
You can use the $ORACLE_HOME/precomp/demo/proc/demo_proc.mk make file to create user
programs. This make file builds either 32-bit or 64-bit user programs. You can also use
the demo_proc32.mk make file to build 32-bit user programs. The following table shows
the make files that you can use to build 32-bit and 64-bit user programs with Pro*C/C+
+:

Platform 64-bit Make File 32-Bit Make File

Oracle Solaris, Linux x86-64,
IBM: Linux on System z, IBM
AIX on POWER Systems (64-
Bit), and HP-UX

demo_proc.mk demo_proc32.mk

See Also:

The make file for more information about creating user programs

Note:

On IBM AIX on POWER Systems (64-Bit), to ensure that the programs
compile correctly, specify the -r option for the make command used in the
following examples.

To create a program by using the demo_proc.mk make file, run a command similar to the
following:

$ make -f demo_proc.mk target OBJS="objfile1 objfile2 ..." EXE=exename

In this example:

• target is the make file target that you want to use

• objfilen is the object file to link the program

• exename is the executable program

For example, to create the program myprog from the Pro*C/C++ source file myprog.pc,
run one of the following commands, depending on the source and the type of
executable that you want to create:

• For C source dynamically linked with the client shared library, run the following
command:

$ make -f demo_proc.mk build OBJS=myprog.o EXE=myprog

• For C source statically linked with the client shared library, run the following
command:

$ make -f demo_proc.mk build_static OBJS=myprog.o EXE=myprog

Chapter 6
Pro*C/C++ Precompiler

6-8

• For C++ source dynamically linked with the client shared library, run the following
command:

$ make -f demo_proc.mk cppbuild OBJS=myprog.o EXE=myprog

• For C++ source statically linked with the client shared library, run the following
command:

$ make -f demo_proc.mk cppbuild_static OBJS=myprog.o EXE=myprog

6.4 Pro*COBOL Precompiler
Table 6-3 shows the naming conventions for the Pro*COBOL precompiler.

Table 6-3 Pro*COBOL Naming Conventions

Item Naming Convention

Executable procob

Demonstration directory procob2

Make file demo_procob.mk or demo_procob_32.mk

Pro*COBOL supports statically linked, dynamically linked, or dynamically loadable
programs. Dynamically linked programs use the client shared library. Dynamically
loadable programs use the rtsora executable located in the $ORACLE_HOME/bin directory.

This section contains the following topics:

• Pro*COBOL Environment Variables

• Pro*COBOL Oracle Runtime System

• Pro*COBOL Demonstration Programs

• Pro*COBOL User Programs

• FORMAT Precompiler Option

6.4.1 Pro*COBOL Environment Variables
This section describes the environment variables required by Pro*COBOL:

• Micro Focus Server Express COBOL Compiler

• Acucorp ACUCOBOL-GT COBOL Compiler

6.4.1.1 Micro Focus Server Express COBOL Compiler
To use the Micro Focus Server Express COBOL compiler, you must set the COBDIR and
PATH environment variables and the shared library path environment variable.

See Also:

The "Client Shared and Static Libraries" section for information about the
shared library path environment variable

Chapter 6
Pro*COBOL Precompiler

6-9

COBDIR

Set the COBDIR environment variable to the directory where the compiler is installed.
For example, if the compiler is installed in the /opt/lib/cobol directory, then run the
following command:

• Bourne, Bash, or Korn shell:

$ COBDIR=/opt/lib/cobol
$ export COBDIR

• C shell:

% setenv COBDIR /opt/lib/cobol

PATH

Set the PATH environment variable to include the $COBDIR/bin directory:

• Bourne, Bash, or Korn shell:

$ PATH=$COBDIR/bin:$PATH
$ export PATH

• C shell:

% setenv PATH ${COBDIR}/bin:${PATH}

Shared Library Path

Set the LIBPATH, LD_LIBRARY_PATH, or SHLIB_PATH environment variable to the directory
where the compiler library is installed. For example, if the platform uses the
LD_LIBRARY_PATH environment variable and the compiler library is installed in
the $COBDIR/coblib directory, then run the following command:

• Bourne, Bash, or Korn shell:

$ LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:$COBDIR/coblib
$ export LD_LIBRARY_PATH

• C shell:

% setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:$COBDIR/coblib

6.4.1.2 Acucorp ACUCOBOL-GT COBOL Compiler
To use the Acucorp ACUCOBOL-GT COBOL compiler, you must set the A_TERMCAP,
A_TERM, PATH, and LD_LIBRARY_PATH environment variables. If the LD_LIBRARY_PATH
environment variable setting does not include the correct directory, then an error
message similar to the following is displayed when you compile or run a program:

runcbl: error while loading shared libraries: libclntsh.so:
cannot open shared object file: No such file or directory

A_TERMCAP and A_TERM

Set the A_TERMCAP environment variable to specify the location of the a_termcap file and
set the A_TERM environment variable to specify a supported terminal from that file. For
example:

• Bourne, Bash, or Korn shell:

Chapter 6
Pro*COBOL Precompiler

6-10

$ A_TERMCAP=/opt/COBOL/etc/a_termcap
$ A_TERM=vt100
$ export A_TERMCAP A_TERM

• C shell:

% setenv A_TERMCAP /opt/COBOL/etc/a_termcap
% setenv A_TERM vt100

PATH

Set the PATH environment variable to include the /opt/COBOL/bin directory:

• Bourne, Bash, or Korn shell:

$ PATH=/opt/COBOL/bin:$PATH
$ export PATH

• C shell:

% setenv PATH opt/COBOL/bin:${PATH}

LD_LIBRARY_PATH

Note:

On IBM AIX on POWER Systems (64-Bit), the LIBPATH variable is the
LD_LIBRARY_PATH variable equivalent. You must use the LIBPATH variable on
IBM AIX on POWER Systems (64-Bit) instead of the LD_LIBRARY_PATH variable
in the following commands.

Set the LD_LIBRARY_PATH environment variable to the directory where the compiler
library is installed. For example, if the compiler library is installed in the /opt/COBOL/lib
directory, then run the following command:

• Bourne, Bash, or Korn shell:

$ LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/opt/COBOL/lib
$ export LD_LIBRARY_PATH

• C shell:

% setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:/opt/COBOL/lib

6.4.2 Pro*COBOL Oracle Runtime System
Oracle provides its own complete run-time system, called rtsora, to run dynamically
loadable Pro*COBOL programs. Use the rtsora run-time system instead of the cobrun
run-time system to run dynamically loadable Pro*COBOL programs. If you attempt to
run a Pro*COBOL program with cobrun, then an error message similar to the following
is displayed:

$ cobrun sample1.gnt
Load error : file 'SQLADR'
error code: 173, pc=0, call=1, seg=0
173 Called program file not found in drive/directory

Chapter 6
Pro*COBOL Precompiler

6-11

6.4.3 Pro*COBOL Demonstration Programs
Demonstration programs are provided to show the features of the Pro*COBOL
precompiler. The demonstration programs are located in the $ORACLE_HOME/precomp/
demo/procob2 directory. By default, all programs are dynamically linked with the client
shared library.

To run the demonstration programs, the programs require the demonstration tables
created by the $ORACLE_HOME/sqlplus/demo/demobld.sql script to exist in the JONES
schema with a password.

Note:

You must unlock the JONES account and set the password before creating
the demonstrations.

Use the following make file to create the demonstration programs:

$ORACLE_HOME/precomp/demo/procob2/demo_procob.mk

To precompile, compile, and link the sample1 demonstration program for Pro*COBOL,
run the following command:

$ make -f demo_procob.mk sample1

To create the Pro*COBOL demonstration programs, run the following command:

$ make -f demo_procob.mk samples

To create and run a dynamically loadable sample1.gnt program to be used with the
rtsora run-time system, run the following command:

$ make -f demo_procob.mk sample1.gnt
$ rtsora sample1.gnt

Some demonstration programs require you to run a SQL script, which is located in
the $ORACLE_HOME/precomp/demo/sql directory. If you do not run the script, then a
message requesting you to run it is displayed.

To build a demonstration program and run the corresponding SQL script, include the
make macro argument RUNSQL=run in the command. For example, to create the sample9
demonstration program and run the required $ORACLE_HOME/precomp/demo/sql/
sample9.sql script, run the following command:

$ make -f demo_procob.mk sample9 RUNSQL=run

To create the Pro*COBOL demonstration programs and run all required SQL scripts,
run the following command:

$ make -f demo_procob.mk samples RUNSQL=run

Chapter 6
Pro*COBOL Precompiler

6-12

6.4.4 Pro*COBOL User Programs
You can use the $ORACLE_HOME/precomp/demo/procob2/demo_procob.mk make file to create
user programs. This make file builds either 32-bit or 64-bit user programs. You can
also use the demo_procob_32.mk make file to build 32-bit user programs. The following
table shows the make files that you can use to build 32-bit and 64-bit user programs
with Pro*COBOL:

Platform 64-bit Make File 32-Bit Make File

Oracle Solaris, Linux x86-64, IBM:
Linux on System z, IBM AIX on
POWER Systems (64-Bit), and HP-
UX

demo_procob.mk demo_procob_32.mk

See Also:

The make file for more information about creating user programs

To create a program using the demo_procob.mk make file, run a command similar to the
following:

$ make -f demo_procob.mk target COBS="cobfile1 cobfile2 ..." EXE=exename

In this example:

• target is the make file target that you want to use

• cobfilen is the COBOL source file for the program

• exename is the executable program

For example, to create the program myprog, run one of the following commands,
depending on the source and type of executable that you want to create:

• For COBOL source, dynamically linked with the client shared library, run the
following command:

$ make -f demo_procob.mk build COBS=myprog.cob EXE=myprog

• For COBOL source, statically linked, run the following command:

$ make -f demo_procob.mk build_static COBS=myprog.cob EXE=myprog

• For COBOL source, dynamically loadable for use with rtsora, run the following
command:

$ make -f demo_procob.mk myprog.gnt

6.4.5 FORMAT Precompiler Option
The FORMAT precompiler option specifies the format of input lines for COBOL. If you
specify the default value ANSI, then columns 1 to 6 contain an optional sequence
number, column 7 indicates comments or continuation lines, paragraph names begin
in columns 8 to 11, and statements begin in columns 12 to 72.

Chapter 6
Pro*COBOL Precompiler

6-13

If you specify the value TERMINAL, then columns 1 to 6 are dropped, making column 7
the left most column.

6.5 Pro*FORTRAN Precompiler
Before you use the Pro*FORTRAN precompiler, verify that the correct version of the
compiler is installed. This section contains the following topics:

• Pro*FORTRAN Demonstration Programs

• Pro*FORTRAN User Programs

See Also:

• Oracle Database Installation Guide for information about supported
compiler versions

• Pro*FORTRAN Supplement to the Oracle Precompilers Guide for
information about the Pro*FORTRAN precompiler and interface features

6.5.1 Pro*FORTRAN Demonstration Programs
Demonstration programs are provided to show the features of the Pro*FORTRAN
precompiler. All demonstration programs are located in the $ORACLE_HOME/precomp/demo/
profor directory. By default, all programs are dynamically linked with the client shared
library.

To run the demonstration programs, the demonstration tables created by
the $ORACLE_HOME/sqlplus/demo/demobld.sql script must exist in the JONES schema
with a password.

Note:

You must unlock the JONES account and set the password before creating
the demonstrations.

To create the demonstration programs, use the demo_profor.mk make file, located in
the $ORACLE_HOME/precomp/demo/profor directory. For example, to precompile, compile,
and link the sample1 demonstration program, run the following command:

$ make -f demo_profor.mk sample1

To create the Pro*FORTRAN demonstration programs, run the following command:

$ make -f demo_profor.mk samples

Some demonstration programs require you to run a SQL script that is located in
the $ORACLE_HOME/precomp/demo/sql directory. If you do not run the script, then a
message prompting you to run it is displayed.

Chapter 6
Pro*FORTRAN Precompiler

6-14

To build a demonstration program and run the corresponding SQL script, include the
make macro argument RUNSQL=run on the command line. For example, to create the
sample11 demonstration program and run the required $ORACLE_HOME/precomp/demo/sql/
sample11.sql script, run the following command:

$ make -f demo_profor.mk sample11 RUNSQL=run

To create the Pro*FORTRAN demonstration programs and run all the required SQL
scripts, run the following command:

$ make -f demo_profor.mk samples RUNSQL=run

6.5.2 Pro*FORTRAN User Programs
You can use the $ORACLE_HOME/precomp/demo/profor/demo_profor.mk make file to create
user programs. This make file builds either 32-bit or 64-bit user programs. You can
also use the demo_profor_32.mk make file to build 32-bit user programs. The following
table shows the make files that you can use to build 32-bit and 64-bit user programs
with Pro*FORTRAN:

Platform 64-bit Make File 32-Bit Make File

Oracle Solaris, IBM AIX on POWER
Systems (64-Bit), and HP-UX

demo_profor.mk demo_profor_32.mk

See Also:

The make file for more information about creating user programs

To create a program using the demo_proc.mk make file, run a command similar to the
following:

$ make -f demo_profor.mk target FORS="forfile1 forfile2 ..." EXE=exename

In this example:

• target is the make file target that you want to use

• forfilen is the FORTRAN source for the program

• exename is the executable program

For example, to create the program myprog from the Pro*FORTRAN source file
myprog.pfo, run one of the following commands, depending on the type of executable
that you want to create:

• For an executable dynamically linked with the client shared library, run the
following command:

$ make -f demo_profor.mk build FORS=myprog.f EXE=myprog

• For an executable statically linked with the client shared library, run the following
command:

$ make -f demo_profor.mk build_static FORS=myprog.f EXE=myprog

Chapter 6
Pro*FORTRAN Precompiler

6-15

6.6 SQL*Module for ADA

Note:

The information in this section applies to the IBM AIX on POWER Systems
(64-Bit) platform.

Before using SQL*Module for Ada, verify that the correct version of the compiler is
installed.

See Also:

• Oracle Database Installation Guide for information about required
compiler versions

• Oracle SQL*Module for Ada Programmer's Guide for information about
SQL*Module for Ada

This section contains the following topics:

• SQL*Module for Ada Demonstration Programs

• SQL*Module for Ada User Programs

6.6.1 SQL*Module for Ada Demonstration Programs
Demonstration programs are provided to show the features of SQL*Module for Ada. All
demonstration programs are located in the $ORACLE_HOME/precomp/demo/modada directory.
By default, all programs are dynamically linked with the client shared library.

To run the ch1_drv demonstration program, the demonstration tables created by
the $ORACLE_HOME/sqlplus/demo/demobld.sql script must exist in the JONES schema with a
password.

Note:

You must unlock the JONES account and set the password before creating
the demonstrations.

The demcalsp and demohost demonstration programs require that the sample college
database exists in the MODTEST schema. You can use the appropriate make command to
create the MODTEST schema and load the sample college database.

Run the following command to create the SQL*Module for Ada demonstration
programs, run the necessary SQL scripts to create the MODTEST user, and create the
sample college database:

Chapter 6
SQL*Module for ADA

6-16

http://www.oracle.com/pls/topic/lookup?ctx=E11882-01&id=ZZMOD107

$ make -f demo_modada.mk all RUNSQL=run

To create a single demonstration program (demohost) and run the necessary SQL
scripts to create the MODTEST user, and create the sample college database, run the
following command:

$ make -f demo_modada.mk makeuser loaddb demohost RUNSQL=run

To create the SQL*Module for Ada demonstration programs, without re-creating the
sample college database, run the following command:

$ make -f demo_modada.mk samples

To create a single demonstration program (demohost), without re-creating the sample
college database, run the following command:

$ make -f demo_modada.mk demohost

To run the programs, you must define an Oracle Net connect string or alias named
INST1_ALIAS that is used to connect to the database where the appropriate tables
exist.

6.6.2 SQL*Module for Ada User Programs
You can use the $ORACLE_HOME/precomp/demo/modada/demo_modada.mk make file to create
user programs. To create a user program with the demo_modada.mk make file, run a
command similar to the following:

$ make -f demo_modada.mk ada OBJS="module1 module2 ..." \
EXE=exename MODARGS=SQL_Module_arguments

In this example:

• modulen is a compiled Ada object

• exename is the executable program

• SQL_Module_arguments are the command-line arguments to be passed to the
SQL*Module

See Also:

Oracle SQL*Module for Ada Programmer's Guide for information about
SQL*Module for Ada

6.7 OCI and OCCI
Before you use the Oracle Call Interface (OCI) or Oracle C++ Call Interface (OCCI),
verify that the correct version of C or C++ is installed.

Chapter 6
OCI and OCCI

6-17

http://www.oracle.com/pls/topic/lookup?ctx=E11882-01&id=ZZMOD107

See Also:

• Oracle Database Installation Guide for information about supported
compiler versions

• Oracle Call Interface Programmer's Guide or Oracle C++ Call Interface
Programmer's Guide for information about OCI and OCCI

This section contains the following topics:

• OCI and OCCI Demonstration Programs

• OCI and OCCI User Programs

6.7.1 OCI and OCCI Demonstration Programs
Demonstration programs that show the features of OCI and OCCI are provided with
the Oracle Database 18c Examples software. There are two types of demonstration
programs: C and C++. All demonstration programs are located in the $ORACLE_HOME/
rdbms/demo directory. By default, all programs are dynamically linked with the client
shared library.

To run the demonstration programs, the programs require the demonstration tables
created by the $ORACLE_HOME/sqlplus/demo/demobld.sql script to exist in the JONES
schema with a password. Some demonstration programs require specific .sql files to
be run, as mentioned in the demonstration source files. OCCI demonstration programs
require occidemo.sql to be run.

Note:

You must unlock the JONES account and set the password before creating
the demonstrations.

Use the demo_rdbms.mk make file, which is located in the $ORACLE_HOME/rdbms/demo
directory, to create the demonstration programs. For example, to compile and link the
cdemo1 demonstration program, run the following command:

$ make -f demo_rdbms.mk cdemo1

To create the C demonstration programs for OCI, run the following command:

$ make -f demo_rdbms.mk demos

To create the C++ demonstration programs for OCCI, run the following command:

$ make -f demo_rdbms.mk occidemos

6.7.2 OCI and OCCI User Programs
You can use the $ORACLE_HOME/rdbms/demo/demo_rdbms.mk make file to build user
programs. This make file builds either 32-bit or 64-bit user programs. You can also use
the demo_rdbms32.mk to build 32-bit user programs on a 64-bit operating system. The

Chapter 6
OCI and OCCI

6-18

following table shows the make files that you can use to build 32-bit and 64-bit user
programs with Pro*FORTRAN:

Platform 64-bit Make File 32-Bit Make File

Oracle Solaris, Linux x86-64, IBM
AIX on POWER Systems (64-Bit),
and HP-UX

demo_rdbms.mk demo_rdbms32.mk

See Also:

The make file for more information about building user programs

6.8 Running Oracle JDBC/OCI Programs with a 64-Bit
Driver

Note:

• The information in this section applies to Oracle Solaris, Linux x86-64,
IBM: Linux on System z, IBM AIX on POWER Systems (64-Bit), and HP-
UX platforms.

• You can use the instructions and make files described in this section to
create JDBC/OCI user programs that use a 64-bit driver.

To run JDBC/OCI demonstration programs with a 64-bit driver:

1. Add $ORACLE_HOME/jdbc/lib/ojdbc5.jar to the start of the CLASSPATH environment
variable value for each of the following files:

jdbc/demo/samples/jdbcoci/Makefile
jdbc/demo/samples/generic/Inheritance/Inheritance1/Makefile
jdbc/demo/samples/generic/Inheritance/Inheritance2/Makefile
jdbc/demo/samples/generic/Inheritance/Inheritance3/Makefile
jdbc/demo/samples/generic/JavaObject1/Makefile
jdbc/demo/samples/generic/NestedCollection/Makefile

2. Modify the JAVA and JAVAC variables in the $ORACLE_HOME/jdbc/demo/samples/
generic/Makefile file to specify the JDK location and the -d64 flag, as follows:

JAVA=${ORACLE_HOME}/java/bin/java -d64
JAVAC=${ORACLE_HOME}/java/bin/javac -d64

3. Set the LD_LIBRARY_PATH_64 environment variable to include the $ORACLE_HOME/lib
directory.

Chapter 6
Running Oracle JDBC/OCI Programs with a 64-Bit Driver

6-19

Note:

On IBM AIX on POWER Systems (64-Bit), the LIBPATH variable is the
LD_LIBRARY_PATH_64 variable equivalent. You must use the LIBPATH
variable on IBM AIX on POWER Systems (64-Bit) instead of the
LD_LIBRARY_PATH_64 variable.

6.9 Custom Make Files
Oracle recommends that you use the demo_product.mk make files provided with the
software to create user programs as described in the product-specific sections of this
chapter. If you modify the provided make file or if you choose to use a custom-written
make file, then remember that the following restrictions apply:

• Do not modify the order of the Oracle libraries. Oracle libraries are included on the
link line more than once so that all the symbols are resolved during linking.

Except for IBM AIX on POWER Systems (64-Bit), the order of the Oracle libraries
is essential on all platforms for the following reasons:

– Oracle libraries are mutually referential. For example, functions in library A call
functions in library B, and functions in library B call functions in library A.

– The HP-UX linkers are one-pass linkers. The IBM AIX on POWER Systems
(64-Bit), Linux, and Oracle Solaris linkers are two-pass linkers.

• Add the library to the beginning or to the end of the link line. Do not place user
libraries between the Oracle libraries.

• If you choose to use a make utility such as nmake or GNU make, then you must be
aware of how macro and suffix processing differs from the make utility provided with
the operating system. Oracle make files are tested and supported with the make
utility.

• Oracle library names and the contents of Oracle libraries are subject to change
between releases. Always use the demo_product.mk make file that ships with the
current release as a guide to determine the required libraries.

6.10 Correcting Undefined Symbols
Oracle provides the symfind utility to assist you in locating a library or object file where
a symbol is defined. When linking a program, undefined symbols are a common error
that produce an error message similar to the following:

$ make -f demo_proc.mk sample1
Undefined first referenced
 symbol in file
sqlcex sample1.o
sqlglm sample1.o
ld: irrecoverable: Symbol referencing errors. No output written to sample1

The error occurs when the linker cannot find a definition for a referenced symbol. If this
error message is displayed, then verify that the library or object file containing the
definition exists on the link line and that the linker is searching the correct directories
for the file.

Chapter 6
Custom Make Files

6-20

The following example shows the output from the symfind utility, which is used to
locate the sqlcex symbol:

$ symfind sqlcex

SymFind - Find Symbol <sqlcex> in <**>.a, .o, .so
--
Command: /u01/app/oracle/product/18.0.0/bin/symfind sqlcex
Local Directory: /u01/app/oracle/product/18.0.0
Output File: (none)
Note: I do not traverse symbolic links
 Use '-v' option to show any symbolic links

Locating Archive and Object files ...
[11645] | 467572| 44|FUNC |GLOB |0 |8 |sqlcex
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ./lib/libclntsh.sl
[35] | 0| 44|FUNC |GLOB |0 |5 |sqlcex
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ./lib/libsql.a

6.11 Multithreaded Applications
The Oracle libraries provided with this release are thread-safe, they support
multithreaded applications.

See Also:

Pro*C/C++ Programmer's Guide for more information on Multithreaded
Applications

6.12 Using Signal Handlers
Oracle Database uses signals for two-task communication. Signals are installed in a
user process when the process connects to the database and are removed when it
disconnects.

The following table describes the signals that Oracle Database uses for two-task
communication.

Table 6-4 Signals for Two-Task Communication

Signal Description

SIGCLD The pipe driver uses SIGCLD, also referred to as SIGCHLD, when an Oracle
process terminates. The operating system kernel sends a SIGCLD signal to
the user process. The signal handler uses the wait() routine to determine if
a server process died. The Oracle process does not catch SIGCLD; the user
process catches it.

SIGCONT The pipe two-task driver uses SIGCONT to send out-of-band breaks from the
user process to the Oracle process.

SIGINT Two-task drivers use SIGINT to detect user interrupt requests. The Oracle
process does not catch SIGINT; the user process catches it.

SIGIO Oracle Net protocols use SIGIO to indicate incoming networking events.

Chapter 6
Multithreaded Applications

6-21

Table 6-4 (Cont.) Signals for Two-Task Communication

Signal Description

SIGPIPE The pipe driver uses SIGPIPE to detect end-of-file on the communications
channel. When writing to the pipe, if no reading process exists, then a
SIGPIPE signal is sent to the writing process. Both the Oracle process and
the user process catch SIGPIPE. SIGCLD is similar to SIGPIPE, but it
applies only to user processes, not to Oracle processes.

SIGTERM The pipe driver uses SIGTERM to signal interrupts from the user to the
Oracle process. This occurs when the user presses the interrupt key, Ctrl+C.
The user process does not catch SIGTERM; the Oracle process catches it.

SIGURG Oracle Net TCP/IP drivers use SIGURG to send out-of-band breaks from the
user process to the Oracle process.

The listed signals affect all precompiler applications. You can install one signal handler
for SIGCLD (or SIGCHLD) and SIGPIPE when connected to the Oracle process. If you
call the osnsui() routine to set it up, then you can have multiple signal handles for
SIGINT. For SIGINT, use osnsui() and osncui() to register and delete signal-catching
routines.

You can also install as many signal handlers as you want for other signals. If you are
not connected to the Oracle process, then you can have multiple signal handlers.

Example 6-1 shows how to set up a signal routine and a catching routine.

Example 6-1 Signal Routine and Catching Routine

/* user side interrupt set */
word osnsui(/*_ word *handlp, void (*astp), char * ctx, _*/)
/*
** osnsui: Operating System dependent Network Set User-side Interrupt. Add an
** interrupt handling procedure astp. Whenever a user interrupt(such as a ^C)
** occurs, call astp with argument ctx. Put in *handlp handle for this
** handler so that it may be cleared with osncui. Note that there may be many
** handlers; each should be cleared using osncui. An error code is returned if
** an error occurs.
*/

/* user side interrupt clear */
word osncui(/*_ word handle _*/);
/*
** osncui: Operating System dependent Clear User-side Interrupt. Clear the
** specified handler. The argument is the handle obtained from osnsui. An error
** code is returned if an error occurs.
*/

Example 6-2 shows how to use the osnsui() and the osncui() routines in an
application program.

Example 6-2 osnsui() and osncui() Routine Template

/*
** User interrupt handler template.
*/
void sig_handler()
{
...
}

Chapter 6
Using Signal Handlers

6-22

main(argc, argv)
int arc;
char **argv;
{

 int handle, err;
 ...

 /* Set up the user interrupt handler */
 if (err = osnsui(&handle, sig_handler, (char *) 0))
 {
 /* If the return value is nonzero, then an error has occurred
 Take appropriate action for the error. */
 ...
 }

 ...

 /* Clear the interrupt handler */
 if (err = osncui(handle))
 {
 /* If the return value is nonzero, then an error has occurred
 Take appropriate action for the error. */
 ...
 }
 ...
}

6.13 XA Functionality
Oracle XA is the Oracle implementation of the X/Open Distributed Transaction
Processing XA interface. The XA standard specifies a bidirectional interface between
resource managers that provide access to shared resources within transactions, and
between a transaction service that monitors and resolves transactions.

Oracle Call Interface has the XA functionality. When building a TP-monitor XA
application, ensure that the TP-monitor libraries (that define the symbols ax_reg and
ax_unreg) are placed in the link line before the Oracle client shared library. This link
restriction is required when using the XA dynamic registration (Oracle XA switch
xaoswd).

Oracle Database XA calls are defined in both the client shared library (libclntsh.a,
libclntsh.sl, libclntsh.so, or libclntsh.dylib depending on the platform) and the
client static library (libclntst11.a). These libraries are located in the $ORACLE_HOME/lib
directory.

Chapter 6
XA Functionality

6-23

7
 SQL*Loader and PL/SQL Demonstrations

This chapter describes how to build and run the SQL*Loader and PL/SQL
demonstration programs available with Oracle Database. It contains the following
sections:

• SQL*Loader Demonstrations

• PL/SQL Demonstrations

• Calling 32-Bit External Procedures from 64-Bit Oracle Database PL/SQL

Note:

To use the demonstrations described in this chapter, you must install Oracle
Database Examples included on the Oracle Database 18c Examples media.
You must unlock JONES account and set the password before creating the
demonstrations.

7.1 SQL*Loader Demonstrations
Run the ulcase.sh file to run the SQL*Loader demonstrations. To run an individual
demonstration, read the information contained in the file to determine how to run it.

7.2 PL/SQL Demonstrations
PL/SQL includes many demonstration programs. You must build database objects and
load sample data before using these programs. To build the objects and load the
sample data:

1. Change directory to the PL/SQL demonstrations directory:

$ cd $ORACLE_HOME/plsql/demo

2. Start SQL*Plus, and enter the following command:

$ sqlplus
SQL> CONNECT JONES
Enter password: password

3. Run the following commands to build the objects and load the sample data:

SQL> @exampbld.sql
SQL> @examplod.sql

7-1

Note:

Build the demonstrations as any Oracle user with sufficient privileges.
Run the demonstrations as the same Oracle user.

PL/SQL Kernel Demonstrations

The following PL/SQL kernel demonstrations are available with the software:

• examp1.sql to examp8.sql

• examp11.sql to examp14.sql

• sample1.sql to sample4.sql

• extproc.sql

To compile and run the exampn.sql or samplen.sql PL/SQL kernel demonstrations:

1. Start SQL*Plus, and enter the following command:

$ cd $ORACLE_HOME/plsql/demo
$ sqlplus
SQL> CONNECT JONES
Enter password: password

2. Run a command similar to the following to run a demonstration, where demo_name is
the name of the demonstration:

SQL> @demo_name

To run the extproc.sql demonstration:

1. If required, add an entry for external procedures to the tnsnames.ora file, similar to
the following:

EXTPROC_CONNECTION_DATA =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS=(PROTOCOL = IPC)(KEY = EXTPROC))
)
 (CONNECT_DATA =
 (SID = PLSExtProc)
)
)

2. If required, add an entry for external procedures to the listener.ora file, similar to
the following:

Note:

The value that you specify for SID_NAME in the listener.ora file must
match the value that you specify for SID in the tnsnames.ora file.

• On Oracle Solaris, Linux, and HP-UX:

SID_LIST_LISTENER =
 (SID_LIST =

Chapter 7
PL/SQL Demonstrations

7-2

 (SID_DESC=
 (SID_NAME=PLSExtProc)
 (ORACLE_HOME=oracle_home_path)
 (ENVS=EXTPROC_DLLS=oracle_home_path/plsql/demo/extproc.so,
 LD_LIBRARY_PATH=oracle_home_path/plsql/demo)
 (PROGRAM=extproc)
)
)

• On IBM AIX on POWER Systems (64-Bit):

SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC=
 (SID_NAME=PLSExtProc)
 (ORACLE_HOME=oracle_home_path)
 (ENVS=EXTPROC_DLLS=oracle_home_path/plsql/demo/extproc.so,
 LIBPATH=oracle_home_path/plsql/demo)
 (PROGRAM=extproc)
)
)

3. Change directory to $ORACLE_HOME/plsql/demo.

4. Run the following command to create the extproc.so shared library, build the
required database objects, and load the sample data:

$ make -f demo_plsql.mk extproc.so exampbld examplod

Alternatively, if you have already built the database objects and loaded the sample
data, then run the following command:

$ make -f demo_plsql.mk extproc.so

5. From SQL*Plus, run the following commands:

SQL> CONNECT SYSTEM
Enter password: system_password
SQL> GRANT CREATE LIBRARY TO JONES;
SQL> CONNECT JONES
Enter password: password
SQL> CREATE OR REPLACE LIBRARY demolib IS
 2 'oracle_home_path/plsql/demo/extproc.so';
 3 /

Note:

CREATE LIBRARY is a very high privilege. This privilege must be granted
only to trusted users.

6. To start the demonstration, run the following command:

SQL> @extproc

Chapter 7
PL/SQL Demonstrations

7-3

Example 7-1 PL/SQL Precompiler Demonstrations

Note:

The make commands shown in this section build the required database
objects and load the sample data in the JONES schema.

The following precompiler demonstrations are available:

• examp9.pc

• examp10.pc

• sample5.pc

• sample6.pc

To build the PL/SQL precompiler demonstrations, set the library path environment
variable to include the $ORACLE_HOME/lib directory, and run the following commands:

$ cd $ORACLE_HOME/plsql/demo
$ make -f demo_plsql.mk demos

To build a single demonstration, run its name as the argument in the make command.
For example, to build the examp9 demonstration, run the following command:

$ make -f demo_plsql.mk examp9

To start the examp9 demonstration, run the following command:

$./examp9

7.3 Calling 32-Bit External Procedures from 64-Bit Oracle
Database PL/SQL

Note:

This section applies to any 64-Bit Oracle Database.

Starting with Oracle Database 11g Release 2 (11.2), extproc32 is no longer available
from 64-bit Oracle database install. Therefore, if you have a requirement to run 32-bit
external procedures from 64-bit Oracle database, you must obtain 32-bit extproc by
installing the corresponding 32-bit client software for your platform. Specifically, you
must choose custom install within 32-bit client installation, and then select both Oracle
Database Utilities and Oracle listener.

In other words, you need a separate Oracle home (32-bit) to run the 32-bit extproc.
The executable name is not extproc32 anymore, but simply extproc.

To enable 32-bit external procedures on 64-bit Oracle database environment, you
must configure 32-bit listener for extproc and specify Oracle home (from the 32-bit
client install) for the extproc listener.ora entry.

Chapter 7
Calling 32-Bit External Procedures from 64-Bit Oracle Database PL/SQL

7-4

8
Tuning Oracle Database

This chapter describes how to tune Oracle Database. It contains the following
sections:

• Importance of Tuning

• Operating System Tools

• Tuning Memory Management

• Tuning Disk Input-Output

• Monitoring Disk Performance

• System Global Area

• Tuning the Operating System Buffer Cache

8.1 Importance of Tuning
The intent of this section is to efficiently tune and optimize the performance of Oracle
Database. Frequent tuning enhances system performance and prevents data
bottlenecks.

Before tuning the database, you must observe its normal behavior by using the tools
described in the "Operating System Tools" section.

8.2 Operating System Tools
Several operating system tools are available to enable you to assess database
performance and determine database requirements. In addition to providing statistics
for Oracle processes, these tools provide statistics for CPU usage, interrupts,
swapping, paging, context switching, and I/O for the entire system.

This section provides information about the following common tools:

• vmstat

• sar

• iostat

• swap_ swapinfo_ swapon_ or lsps

• Oracle Solaris Tools

• Linux Tools

• IBM AIX on POWER Systems (64-Bit) Tools

• HP-UX Tools

8-1

See Also:

The operating system documentation and man pages for more information
about these tools

8.2.1 vmstat
vmstat reports information about processes, memory, paging, block IO, traps, and cpu
activity.

Use the vmstat command to view process, virtual memory, disk, trap, and CPU activity,
depending on the switches that you supply with the command. Run one of the
following commands to display a summary of CPU activity six times, at five-second
intervals:

• On Oracle Solaris and HP-UX:

$ vmstat -S 5 6

Note:

The -S option displays the swapping statistics.

• On Linux and IBM AIX on POWER Systems (64-bit):

$ vmstat 5 6

The following is a sample output of this command on Linux:

procs memory swap io system cpu
r b swpd free buff cache si so bi bo in cs us sy id wa st
0 0 130668 103604 198144 5029000 0 0 1 68 8 6 0 0 100 0 0
0 0 130668 103604 198144 5029000 0 0 0 86 226 352 0 0 100 0 0
0 0 130668 103604 198148 5029000 0 0 0 58 223 357 0 0 100 0 0
0 0 130668 103604 198152 5029004 0 0 0 68 223 358 0 0 100 0 0
0 0 130668 103604 198152 5029004 0 0 0 56 223 357 0 0 100 0 0
0 0 130668 103604 198152 5029004 0 0 0 57 228 362 0 0 100 0 0

The following is a sample output of the $ vmstat -S 1 2 command on HP-UX:

procs memory page faults cpu
r b w avm free si so pi po fr de sr in sy cs us sy id
1 0 0 112085 2189167 0 0 3 0 0 0 1 1033 32186 108 1 0 98
1 0 0 112085 2189074 0 0 4 0 0 0 0 1022 508 60 0 0 100

The w sub column, under the procs column, shows the number of potential processes
that have been swapped out and written to disk. If the value is not zero, then swapping
occurs and the system is short of memory.

For HP-UX and Oracle Solaris, the si and so columns under the page column indicate
the number of processes swapped-in and swapped-out per second, respectively.
Ideally these values should be zero.

For Linux, the si and so columns represent amount of memory swapped-in and
swapped-out.

Chapter 8
Operating System Tools

8-2

The sr column under the page column indicates the scan rate. High scan rates are
caused by a shortage of available memory.

The pi and po columns under the page column indicate the number of page-ins and
page-outs per second, respectively. It is normal for the number of page-ins and page-
outs to increase. Some paging always occurs even on systems with sufficient available
memory.

See Also:

Refer to the vmstat man page for your platform for information about
interpreting the output

8.2.2 sar
Depending on the switches that you supply with the command, use the sar (system
activity reporter) command to display cumulative activity counters in the operating
system.

On UNIX systems, the following command displays a summary of the input and output
activity every ten seconds:

$ sar -b 10 10

The following example shows the output of this command on a Linux system:

10:28:01 tps rtps wtps bread/s bwrtn/s
10:28:11 17.20 0.00 17.20 0.00 300.80
10:28:21 46.40 0.00 46.40 0.00 467.20
10:28:31 16.40 0.00 16.40 0.00 283.20
10:28:41 15.60 0.00 15.60 0.00 275.20
10:28:51 17.02 0.00 17.02 0.00 254.65
10:29:01 35.80 0.00 35.80 0.00 414.40
10:29:11 15.80 0.00 15.80 0.00 273.60
10:29:21 17.40 0.00 17.40 0.00 262.40
10:29:31 32.20 0.00 32.20 0.00 406.40
10:29:41 20.98 0.00 20.98 0.00 354.85

Average: 23.48 0.00 23.48 0.00 329.28

The sar output provides a snapshot of system input and output activity at a given point
in time. If you specify the interval time with multiple options, then the output can
become difficult to read. If you specify an interval time of less than 5, then the sar
activity itself can affect the output.

See Also:

The man page for more information about sar

Chapter 8
Operating System Tools

8-3

8.2.3 iostat
Use the iostat command to view terminal and disk activity, depending on the switches
that you supply with the command. The output from the iostat command does not
include disk request queues, but it shows which disks are busy. You can use this
information to balance the Input-Output loads.

The following command displays terminal and disk activity five times, at five-second
intervals:

$ iostat 5 5

The following is sample output of the command on Oracle Solaris:

tty blkdev0 sd1 sd2 sd3 cpu
 tin tout kps tps serv kps tps serv kps tps serv kps tps serv us sy st id
 0 1 0 0 0 0 0 31 0 0 18 3 0 42 0 0 0 99
 0 16 0 0 0 0 0 0 0 0 0 1 0 14 0 0 0 100
 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
 0 16 0 0 0 0 0 0 2 0 14 12 2 47 0 0 1 98

Use the iostat command to look for large disk request queues. A request queue
shows how long the Input-Output requests on a particular disk device must wait to be
serviced. Request queues are caused by a high volume of Input-Output requests to
that disk or by Input-Output with long average seek times. Ideally, disk request queues
should be at or near zero.

8.2.4 swap, swapinfo, swapon, or lsps
Use the swap, swapinfo, swapon, or lsps command to report information about swap
space usage. A shortage of swap space can stop processes to respond, leading to
process failures with Out of Memory errors. The following table lists the appropriate
command to use for each platform:

Platform Command

Oracle Solaris swap -lh , swap -sh, and zfs list rpool/swap

Linux swapon -s

IBM AIX on POWER
Systems (64-bit)

lsps -a

HP-UX swapinfo -m

The following example shows sample output from the swap -l command on Oracle
Solaris:

swapfile dev swaplo blocks free
/dev/zvol/dsk/rpool/swap 274,1 8 20971447 20971447

8.2.5 Oracle Solaris Tools
On Oracle Solaris systems, use the mpstat command to view statistics for each
processor in a multiprocessor system. Each row of the table represents the activity of
one processor. The first row summarizes all activity since the last system restart. Each

Chapter 8
Operating System Tools

8-4

subsequent row summarizes activity for the preceding interval. All values are events
per second unless otherwise noted. The arguments are for time intervals between
statistics and number of iterations.

The following example shows sample output from the mpstat command:

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys st idl
 0 3 0 2 319 103 109 0 19 11 0 73 0 1 0 99
 1 4 0 1 71 1 95 0 14 12 0 96 0 0 0 99

8.2.6 Linux Tools
On Linux systems, use the top, free, and cat /proc/meminfo commands to view
information about swap space, memory, and buffer usage.

8.2.7 IBM AIX on POWER Systems (64-Bit) Tools
The following sections describe tools available on IBM AIX on POWER Systems (64-
bit):

• Base Operation System Tools

• Performance Toolbox

• System Management Interface Tool

See Also:

The IBM AIX on POWER Systems (64-bit) operating system documentation
and man pages for more information about these tools

8.2.7.1 Base Operation System Tools
The IBM AIX on POWER Systems (64-bit) Base Operation System contains
performance tools that are historically part of UNIX systems or are required to manage
the implementation-specific features of IBM AIX on POWER Systems (64-bit). The
following table lists the most important Base Operation System tools.

Tool Function

lsattr Displays the attributes of devices

lslv Displays information about a logical volume or the logical volume
allocations of a physical volume

netstat Displays the contents of network-related data structures

nfsstat Displays statistics about Network File System and Remote Procedure Call
activity

nice Changes the initial priority of a process

no Displays or sets network options

ps Displays the status of one or more processes

reorgvg Reorganizes the physical-partition allocation within a volume group

Chapter 8
Operating System Tools

8-5

Tool Function

time Displays the elapsed execution, user CPU processing, and system CPU
processing time

trace Records and reports selected system events

vmo Manages Virtual Memory Manager tunable parameters

8.2.7.2 Performance Toolbox
The IBM AIX on POWER Systems (64-bit) Performance Toolbox contains tools for
monitoring and tuning system activity locally and remotely. The Performance Tool Box
consists of two main components, the Performance Tool Box Manager and the
Performance Tool Box Agent. The Performance Tool Box Manager collects and
displays data from various systems in the configuration by using the xmperf utility. The
Performance Tool Box Agent collects and transmits data to the Performance Tool Box
Manager by using the xmserd daemon. The Performance Tool Box Agent is also
available as a separate product called Performance Aide for IBM AIX on POWER
Systems (64-bit).

Both Performance Tool Box and Performance Aide include the monitoring and tuning
tools listed in the following table:

Tool Description

fdpr Optimizes an executable program for a particular workload

filemon Uses the trace facility to monitor and report the activity of the file system

fileplace Displays the placement of blocks of a file within logical or physical volumes

lockstat Displays statistics about contention for kernel locks

lvedit Facilitates interactive placement of logical volumes within a volume group

netpmon Uses the trace facility to report on network Input-Output and network-
related CPU usage

rmss Simulates systems with various memory sizes for performance testing

svmon Captures and analyzes information about virtual-memory usage

syscalls Records and counts system calls

tprof Uses the trace facility to report CPU usage at module and source-code-
statement levels

BigFoot Reports the memory access patterns of processes

stem Permits subroutine-level entry and exit instrumentation of existing
executables

See Also:

• Performance Toolbox Version 2 and 3 Guide and Reference for
information about these tools

• AIX 5L Performance Management Guide for information about the
syntax of some of these tools

Chapter 8
Operating System Tools

8-6

8.2.7.3 System Management Interface Tool
The IBM AIX on POWER Systems (64-bit) System Management Interface Tool (SMIT)
provides a menu-driven interface to various system administrative and performance
tools. By using SMIT, you can navigate through large numbers of tools and focus on
the jobs that you want to perform.

8.2.8 HP-UX Tools
The following performance analysis tools are available on HP-UX systems:

• GlancePlus/UX

This HP-UX utility is an online diagnostic tool that measures the activities of the
system. GlancePlus displays information about how system resources are used. It
displays dynamic information about the system Input-Output, CPU, and memory
usage on a series of screens. You can use the utility to monitor how individual
processes are using resources.

• HP Programmer's Analysis Kit

HP Programmer's Analysis Kit consists of the following tools:

– Puma

This tool collects performance statistics during a program run. It provides
several graphical displays for viewing and analyzing the collected statistics.

– Thread Trace Visualizer

This tool displays trace files produced by the instrumented thread library,
libpthread_tr.sl, in a graphical format. It enables you to view how threads are
interacting and to find where threads are blocked waiting for resources.

HP Programmer's Analysis Kit is bundled with the HP Fortran 77, HP Fortran
90, HP C, HP C++, HP ANSI C++, and HP Pascal compilers.

The following table lists the performance tuning tools that you can use for
additional performance tuning on HP-UX:

Tool Description

caliper
(Itanium only)

Collects run-time application data for system analysis tasks such as
cache misses, translation look-aside buffer or instruction cycles,
along with fast dynamic instrumentation. It is a dynamic
performance measurement tool for C, C++, Fortran, and assembly
applications

gprof Creates an execution profile for programs

monitor Monitors the program counter and calls to certain functions

netfmt Monitors the network

netstat Reports statistics on network performance

nfsstat Displays statistics about Network File System and Remote
Procedure Call activity

nettl Captures network events or packets by logging and tracing

Chapter 8
Operating System Tools

8-7

Tool Description

prof Creates an execution profile of C programs and displays
performance statistics for the program, showing where the program
is spending most of its execution time

profil Copies program counter information into a buffer

top Displays the top processes on the system and periodically updates
the information

8.3 Tuning Memory Management
Start the memory tuning process by measuring paging and swapping space to
determine how much memory is available. After you determine the system memory
usage, tune the Oracle buffer cache.

The Oracle buffer manager ensures that the most frequently accessed data is cached
longer. If you monitor the buffer manager and tune the buffer cache, then you can
significantly improve Oracle Database performance. The optimal Oracle Database
buffer size for the system depends on the overall system load and the relative priority
of Oracle Database over other applications.

This section includes the following topics:

• Allocating Sufficient Swap Space

• Monitoring Paging

• Adjusting Oracle Block Size

• Allocating Memory Resource

8.3.1 Allocating Sufficient Swap Space
Try to minimize swapping because it causes significant operating system overhead. To
check for swapping, use the sar or vmstat commands. For information about the
appropriate options to use with these commands, refer to the man pages.

If the system is swapping and you must conserve memory, then:

• Avoid running unnecessary system daemon processes or application processes.

• Decrease the number of database buffers to free some memory.

• Decrease the number of operating system file buffers.

To determine the amount of swap space, run one of the following commands,
depending on the platform:

Platform Command

Oracle Solaris swap -l, swap -s, and zfs get volsize rpool/swap

Linux swapon -s

IBM AIX on POWER
Systems (64-bit)

lsps -a

HP-UX swapinfo -m

Chapter 8
Tuning Memory Management

8-8

Monitor the use of swap space, and increase it as required. The following table
describes the initially recommended relationship between installed RAM and the
configured swap space requirement:

RAM Swap Space

Between 1 GB and 2 GB 1.5 times the size of RAM

Between 2 GB and 16 GB Equal to the size of RAM

More than 16 GB 16 GB

To add swap space to the system, run one of the following commands, depending on
the platform:

Platform Command

Oracle Solaris Use one of the following options:

• For ZFS file system, extend the swap volume using the
following command:

zfs set volsize=newsize rpool/swap

where newsize is the size of the swap volume that you want to
increase.

• For a non-ZFS file system, use the following command:

swap -a

Linux swapon -a

IBM AIX on POWER
Systems (64-bit)

chps or mkps

HP-UX swapon

See Also:

• My Oracle Support note 1587357.1

• The operating system documentation for more information about these
commands

Note:

Starting with 12c, Oracle Database uses the Optimized Shared Memory
(OSM) model of Oracle Solaris to implement Automatic Memory
Management. Unlike DISM, OSM does not require the double allocation of
swap disk space. For swap space requirements refer to the following note:

My Oracle Support note 1010818.1

Chapter 8
Tuning Memory Management

8-9

https://support.oracle.com/epmos/faces/DocumentDisplay?id=1587357.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=1010818.1

8.3.2 Monitoring Paging
Paging may not present as serious a problem as swapping, because an entire
program does not have to be stored in memory to run. A small number of page-outs
may not noticeably affect the performance of the system.

To detect excessive paging, run measurements during periods of fast response or idle
time to compare against measurements from periods of slow response.

Use the vmstat or sar command to monitor paging.

See Also:

The man pages or the operating system documentation for information about
interpreting the results for the platform

In Oracle Solaris, vmstat —p indicates the number of address translation page faults.
Address translation faults occur when a process refers to a valid page not in memory.

Analyzing memory related issues should start with checking the amount of free
memory in the vmstat output. If free memory is low, then the sr (scan rate) column
should be checked for non-zero values. This indicates that the page scanner is
scanning memory pages to put back on the free list to be reused.

Anonymous (bad) paging can be observed in the vmstat -p command output under the
api (anonymous page-in) and apo (anonymous page-out) columns. This kind of paging
takes place when the system moves anonymous pages to the swap device during a
memory shortage.

If the system consistently has excessive page-out activity, then consider the following
solutions:

• Install more memory.

• Move some work to another system.

• Configure the System Global Area (SGA) to use less memory.

Related Topics

• MOS Document: 1007494.1

8.3.3 Adjusting Oracle Block Size
During read operations, entire operating system blocks are read from the disk. If the
database block size is smaller than the operating system file system block size, then
Input-Output bandwidth is inefficient. If you set Oracle Database block size to be a
multiple of the file system block size, then you can increase performance by up to 5
percent.

The DB_BLOCK_SIZE initialization parameter sets the database block size. However, to
change the value of this parameter, you must re-create the database.

To see the current value of the DB_BLOCK_SIZE parameter, run the SHOW PARAMETER
DB_BLOCK_SIZE command in SQL*Plus.

Chapter 8
Tuning Memory Management

8-10

https://support.oracle.com/epmos/faces/DocumentDisplay?id=1007494.1

8.3.4 Allocating Memory Resource
You can set parameters to automatically allocate memory based on the demands of
workload and the requirements of various database instances running on the same
system. The MEMORY_TARGET parameter specifies the Oracle systemwide usable memory
for that instance and automatically tunes SGA and Process Global Area (PGA)
components. The MEMORY_MAX_TARGET parameter identifies the value up to which the
MEMORY_TARGET parameter can grow dynamically.

By default, the value for both these parameters is zero and there is no auto-tuning.
You can activate auto-tuning by setting the MEMORY_TARGET parameter to a nonzero
value. To dynamically enable the MEMORY_TARGET parameter, the MEMORY_MAX_TARGET
parameter must be set at startup.

Note:

If you just set the MEMORY_TARGET parameter to a nonzero value, the
MEMORY_MAX_TARGET parameter automatically acquires this value.

The MEMORY_TARGET and MEMORY_MAX_TARGET parameters are only supported on
Linux, Oracle Solaris, HP-UX, and IBM AIX on POWER Systems (64-bit)
platforms.

On Oracle Solaris, Dynamic Intimate Shared Memory is enabled for
MEMORY_TARGET or MEMORY_MAX_TARGET. For more information, refer to
“Administering Oracle Database on Oracle Solaris” section.

On Linux, some shared resource requirements are increased when
MEMORY_TARGET or MEMORY_MAX_TARGET are enabled. For more information, refer
to the "Allocating Shared Resources" section.

Tip:

You can set the MEMORY_TARGET and MEMORY_MAX_TARGET parameters based on
original setup, memory available for Oracle on the computer, and workload
memory requirements.

8.4 Tuning Disk Input-Output
Balance Input-Output evenly across all available disks to reduce disk access times.
For smaller databases and those not using RAID, ensure that different data files and
tablespaces are distributed across the available disks.

This section contains the following topics:

• Using Automatic Storage Management

• Choosing the Appropriate File System Type

Chapter 8
Tuning Disk Input-Output

8-11

8.4.1 Using Automatic Storage Management
If you choose to use Automatic Storage Management for database storage, then all
database Input-Output is balanced across all available disk devices in the Automatic
Storage Management disk group.

By using Automatic Storage Management, you avoid manually tuning disk Input-
Output.

8.4.2 Choosing the Appropriate File System Type
Depending on the operating system, you can choose from a range of file system types.
Each file system type has different characteristics. This fact can have a substantial
impact on database performance. The following table lists common file system types:

File System Platform Description

ZFS Oracle Solaris Oracle Solaris ZFS file system

S5 HP-UX UNIX System V file system

UFS Oracle Solaris, IBM AIX on
POWER Systems (64-bit), and
HP-UX

Unix file system, derived from BSD UNIX

VxFS Oracle Solaris, IBM AIX on
POWER Systems (64-bit), and
HP-UX

VERITAS file system

ext2/ext3 Linux Extended file system for Linux

OCFS2 Linux Oracle cluster file system

JFS/JFS2 IBM AIX on POWER Systems
(64-bit)

Journaled file system

GPFS IBM AIX on POWER Systems
(64-bit)

General parallel file system

The suitability of a file system for an application is usually not documented. For
example, even different implementations of the UFS are hard to compare. Depending
on the file system that you choose, performance differences can be up to 20 percent. If
you choose to use a file system, then:

• Make a new file system partition to ensure that the hard disk is clean and
unfragmented.

• Perform a file system check on the partition before using it for database files.

• Distribute disk Input-Output as evenly as possible.

• If you are not using a logical volume manager or a RAID device, then consider
placing log files on a different file system from data files.

See Also:

“Tuning ZFS for Database Products” in Oracle Solaris 11.3 Tunable
Parameters Reference Manual for more information on tuning ZFS for Oracle
Database

Chapter 8
Tuning Disk Input-Output

8-12

.

8.5 Monitoring Disk Performance
The following sections describe the procedure for monitoring disk performance:

• Monitoring Disk Performance on Other Operating Systems

• Using Disk Resync to Monitor Automatic Storage Management Disk Group

8.5.1 Monitoring Disk Performance on Operating Systems
To monitor disk performance, use the sar -b and sar -u commands.

The following table describes the columns of the sar -b command output that are
significant for analyzing disk performance:

Columns Description

bread/s, bwrit/s Blocks read and blocks written per second (important for file system
databases)

pread/s, pwrit/s Number of I/O operations per second on raw devices (important for
raw partition database systems)

Key indicators are:

• The sum of the bread, bwrit, pread, and pwrit column values indicates the level of
activity of the disk Input-Output subsystem. The higher the sum, the busier the
Input-Output subsystem. The larger the number of physical drives, the higher the
sum threshold number can be.

• The %rcache column value should be greater than 90 and the %wcache column value
should be greater than 60. Otherwise, the system may be disk Input-Output
bound.

8.5.2 Using Disk Resync to Monitor Automatic Storage Management
Disk Group

Use the alter diskgroup disk online and alter diskgroup disk offline commands to
temporarily suspend Input-Output to a set of disks. You can use these commands to
perform regular maintenance tasks or upgrades such as disk firmware upgrade. If
transient failures occur on some disks in a disk group, then use alter diskgroup disk
online to quickly recover the disk group.

8.6 System Global Area
The SGA is the Oracle structure that is located in shared memory. It contains static
data structures, locks, and data buffers.

The maximum size of a single shared memory segment is specified by the shmmax
kernel parameter.

The following table shows the recommended value for this parameter, depending on
the platform:

Chapter 8
Monitoring Disk Performance

8-13

Platform Recommended Value

Oracle Solaris 4294967295 or 4 GB minus 16 MB

Linux Minimum of the following values:

• Half the size of the physical memory installed on the system
• 4 GB - 1 byte

IBM AIX on POWER
Systems (64-bit)

NA

HP-UX The size of the physical memory installed on the system

If the size of the SGA exceeds the maximum size of a shared memory segment
(shmmax or shm_max), then Oracle Database attempts to attach more contiguous
segments to fulfill the requested SGA size. The shmseg kernel parameter specifies the
maximum number of segments that can be attached by any process. Set the following
initialization parameters to control the size of the SGA:

• DB_CACHE_SIZE

• DB_BLOCK_SIZE

• JAVA_POOL_SIZE

• LARGE_POOL_SIZE

• LOG_BUFFERS

• SHARED_POOL_SIZE

Alternatively, set the SGA_TARGET initialization parameter to enable automatic tuning of
the SGA size.

Use caution when setting values for these parameters. When values are set too high,
too much of the physical memory is devoted to shared memory. This results in poor
performance.

An Oracle Database configured with Shared Server requires a higher setting for the
SHARED_POOL_SIZE initialization parameter, or a custom configuration that uses the
LARGE_POOL_SIZE initialization parameter. If you installed the database with Oracle
Universal Installer, then the value of the SHARED_POOL_SIZE parameter is set
automatically by Oracle Database Configuration Assistant. However, if you created a
database manually, then increase the value of the SHARED_POOL_SIZE parameter in the
parameter file by 1 KB for each concurrent user.

Sufficient shared memory must be available to each Oracle process to address the
entire SGA:

• Determining the Size of the SGA

• System Resource Verifier Utility

• Guidelines for Setting Semaphore Parameters

• Shared Memory on IBM AIX on POWER Systems (64-Bit)

8.6.1 Determining the Size of the SGA
You can determine the SGA size in one of the following ways:

Chapter 8
System Global Area

8-14

• Run the following SQL*Plus command to display the size of the SGA for a running
database:

SQL> SHOW SGA

The result is shown in bytes.

• Start the database instance to view the size of the SGA displayed next to the Total
System Global Area heading.

• Run the ipcs command as the oracle user.

8.6.2 System Resource Verifier Utility
The System Resource Verifier utility (sysresv) is available with Oracle8i and later
releases. It provides Oracle instance and operating system resource information for
the Oracle system identifiers (ORACLE_SID) that you specify. This utility is located
in $ORACLE_HOME/bin, but it can be used from other locations.

8.6.2.1 Purpose of the sysresv Utility
Use the sysresv utility to display the status of an Oracle instance and identify the
operating system resources it uses, such as the memory and semaphore parameters.
This utility is especially useful when multiple instances are running. For example, if an
instance is not responsive, then you can use this utility to remove operating system
resources.

You can use this utility when an Oracle instance has crashed or was aborted, and
memory and semaphores related to this instance were not cleaned up automatically.
This utility is also useful in determining which Oracle instance is running.

8.6.2.2 Preconditions for Using sysresv
To use the sysresv utility, you must have access to the System Global Area (SGA). To
access the SGA, you must be the Oracle owner or a member of the group that owns
the Oracle binary.

8.6.2.3 Syntax for sysresv
The syntax for the sysresv utility is as follows:

sysresv [-i] [-f] [-d on|off] [-l sid1[sid2 ...]]

Where:

• -i Prompt before removing IPC resources for each sid

• -f Remove IPC resources without prompting for confirmation. This flag overrides
the -i option

• -d on|off List IPC resources for each sid if on. If not specified, the default for -d is
on

• -l sid1 [sid2 sid3] run the sysresv check against one or more space-delimited
system identifiers

Chapter 8
System Global Area

8-15

If sysresv is used without flags, then it reports IPC resources for the Oracle instance
identified by the $ORACLE_SID environment variable in the Oracle installation owner user
profile list of environment variables.

8.6.2.4 Examples of Using sysresv
The following example shows how to use the sysresv utility:

$ sysresv
IPV Resources for ORACLE_SID "sales" :
Shared Memory:
ID KEY
10345 0x51c051ad
Semaphores
ID
10345 0x51c051ad
Oracle Instance alive for sid "sales"

8.6.3 Guidelines for Setting Semaphore Parameters
Use the following guidelines only if the default semaphore parameter values are too
low to accommodate all Oracle processes:

Note:

Oracle recommends that you see the operating system documentation for
more information about setting semaphore parameters.

1. Calculate the minimum total semaphore requirements using the following formula:

sum (process parameters of all database instances on the system) + overhead for
oracle background processes + system and other application requirements

2. Set semmns (maximum number of semaphores allowed for the server) to this total.

3. Set semmsl (maximum number of semaphores in a semaphore set) to 250.

4. Set semmni (maximum number of semaphore sets) to semmns/semmsl rounded up to
the nearest multiple of 1024.

See Also:

My Oracle Support note 226209.1, "Linux: How to Check Current Shared
Memory, Semaphore Values," at the following URL:

https://support.oracle.com/CSP/main/article?

cmd=show&type=NOT&id=226209.1

The semaphore parameters semmns, semmsl, and semmni are obsolete on
Oracle Solaris 10 and later. See My Oracle Support note 1006158.1:

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1006158.1

Chapter 8
System Global Area

8-16

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=226209.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=226209.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1006158.1

8.6.4 Shared Memory on IBM AIX on POWER Systems (64-Bit)

Note:

The information in this section applies only to IBM AIX on POWER Systems
(64-bit).

Shared memory uses common virtual memory resources across processes.
Processes share virtual memory segments through a common set of virtual memory
translation resources, for example, tables and cached entries, for improved
performance.

Shared memory can be pinned to prevent paging and to reduce Input-Output
overhead. To perform this, set the LOCK_SGA parameter to true. On IBM AIX on POWER
Systems (64-bit) 5L, the same parameter activates the large page feature whenever
the underlying hardware supports it.

Run the following command to make pinned memory available to Oracle Database:

$ /usr/sbin/vmo -r -o v_pinshm=1

Run a command similar to the following to set the maximum percentage of real
memory available for pinned memory, where percent_of_real_memory is the maximum
percent of real memory that you want to set:

$ /usr/sbin/vmo -r -o maxpin percent=percent_of_real_memory

When using the maxpin percent option, it is important that the amount of pinned
memory exceeds the Oracle SGA size by at least 3 percent of the real memory on the
system, enabling free pinnable memory for use by the kernel. For example, if you have
2 GB of physical memory and you want to pin the SGA by 400 MB (20 percent of the
RAM), then run the following command:

$ /usr/sbin/vmo -r -o maxpin percent=23

Note:

The default maxpin percent value, which is set at 80 percent, works for most
installations.

Use the svmon command to monitor the use of pinned memory during the operation of
the system. Oracle Database attempts to pin memory only if the LOCK_SGA parameter is
set to true. If the SGA size exceeds the size of memory available for pinning, then the
portion of the SGA exceeding these sizes is allocated to ordinary shared memory.

Large Page Feature on IBM AIX on POWER Systems (64-Bit) POWER4 and
POWER5 Based Systems

To turn on and reserve 10 large pages each of size 16 MB on a POWER4 or
POWER5 system, run the following command:

Chapter 8
System Global Area

8-17

$ /usr/sbin/vmo -r -o lgpg_regions=10 -o lgpg_size=16777216

This command proposes bosboot and warns that a restart is required for the changes
to take affect.

Oracle recommends specifying enough large pages to contain the entire SGA. The
Oracle database instance attempts to allocate large pages when the LOCK_SGA
parameter is set to true.

The 16 MB pages are always pinned, and cannot be used for standard memory. If a
pool of 16 MB size pages is configured, then this memory is unusable for allocation of
standard memory even if no other application is currently using large pages.

The POWER5 based systems support 64 K pages. Oracle uses them for SGA if they
are available. These 64K pages do not require any additional configuration and do not
depend on LOCK_SGA parameter setting.

To monitor use of large pages, use the following command:

$ vmstat -P all

For the IBM AIX on POWER Systems (64-bit) operating system to use 16 MB pages,
or pinned memory when allocating shared memory, the Oracle user ID must have
CAP_BYPASS_RAC_VMM and CAP_PROPAGATE capabilities. User ID that is used to start the
database instance must also have the same capabilities. In particular, when using
large pages on an Oracle Real Application Cluster (Oracle RAC) database, where the
srvctl command is used to start and stop the Oracle RAC database instances, it is
also necessary to set the CAP_BYPASS_RAC_VMM and CAP_PROPAGATE capabilities for the
root user.

See Also:

The IBM AIX on POWER Systems (64-bit) documentation for more
information about enabling and tuning pinned memory and large pages

Capabilities can be set and examined using the following commands:

• Run the following command to check the current capabilities:

$ lsuser –a capabilities oracle

• Add the CAP_BYPASS_RAC_VMM and CAP_PROPAGATE capabilities to this user ID:

$ chuser capabilities=CAP_BYPASS_RAC_VMM,CAP_PROPAGATE oracle

Note:

Only the root user can display and set the capabilities attribute.

8.7 Tuning the Operating System Buffer Cache
Adjust the size of Oracle Database buffer cache. If memory is limited, then adjust the
operating system buffer cache.

Chapter 8
Tuning the Operating System Buffer Cache

8-18

The operating system buffer cache holds blocks of data in memory while they are
being transferred from memory to disk, or from disk to memory.

Oracle Database buffer cache is the area in memory that stores Oracle Database
buffers.

If the amount of memory on the system is limited, then make a corresponding
decrease in the operating system buffer cache size.

Use the sar command to determine which buffer caches you must increase or
decrease.

Chapter 8
Tuning the Operating System Buffer Cache

8-19

A
Administering Oracle Database on Oracle
Solaris

This appendix contains information about administering Oracle Database on Oracle
Solaris.

It contains the following topics:

Oracle Solaris Shared Memory Environment

About Creating Resource Pools on Oracle Solaris Systems

About Multi-CPU Binding Functionality

A.1 Oracle Solaris Shared Memory Environment
This section describes how Oracle Database uses shared memory models like
Optimized Shared Memory (OSM), Intimate Shared Memory (ISM), and Dynamic
Intimate Shared Memory (DISM).

It contains the following topics:

• About Optimized Shared Memory

• Checking for Optimized Shared Memory

• About ISM and DISM

• Checking for ISM or DISM

• About the oradism Utility

• How Oracle Database Decides Between OSM_ ISM and DISM

A.1.1 About Optimized Shared Memory
Starting with 12c, Oracle Database uses the Optimized Shared Memory (OSM) model
of Oracle Solaris on Oracle Solaris 10 1/13 or later and Oracle Solaris 11 SRU 7.5 or
later systems to implement Automatic Memory Management.

OSM allows dynamic resizing of System Global Area (SGA) without restarting the
instance. It does not use the oradism utility and swap disk space. OSM is NUMA-
optimized.

A-1

A.1.2 Checking for Optimized Shared Memory

Note:

Ensure that you set the MEMORY_MAX_TARGET to a greater value than
MEMORY_TARGET to utilize Optimized Shared Memory.

To verify if Oracle Solaris uses Optimized Shared Memory (OSM), enter the following
command:

$ ipcs -dm

If the column ALLOC shows an integer, it specifies that OSM is in use. If the column
ALLOC shows a hyphen, it specifies that OSM is not in use.

A.1.3 About ISM and DISM
On Oracle Solaris systems, Oracle Database uses Intimate Shared Memory (ISM) for
shared memory segments because it shares virtual memory resources between
Oracle processes. ISM causes the physical memory for the entire shared memory
segment to be locked automatically.

On Oracle Solaris 10 systems prior to Oracle Solaris 10 1/13 and Oracle Solaris 11
SRU 7.5, Dynamic Intimate Shared Memory (DISM) is available. This enables Oracle
Database to share virtual memory resources between processes sharing the segment,
and at the same time, enables memory paging. The operating system does not have
to lock down physical memory for the entire shared memory segment.

A.1.4 Checking for ISM or DISM
On Oracle Solaris, to determine if shared memory is in use, use the ipcs -im
command. For example:

% ipcs -im
IPC status from <system> as of Thu Aug 19 01:09:30 PDT 2013
T ID KEY MODE OWNER GROUP ISMATTCH
Shared Memory:
m 11 0xacea4150 --rw-rw---- oracle dba 160

The ISMATTCH field shows 160 processes attached to this shared memory segment.
However, ISMATTCH does not distinguish between Intimate Shared Memory (ISM) and
Dynamic Intimate Shared Memory (DISM).

On Oracle Solaris 10 systems prior to Oracle Solaris 10 1/13 and Oracle Solaris 11
SRU 7.5, to identify if ISM or DISM is in use, or which memory locking service is
active, use the pmap –xs command. For example:

% ps -ef | grep ora | grep smon

oracle 12524 1 0 05:40:13 ? 0:25 ora_smon_prod

% pmap –xs 12524 | grep ism

Appendix A
Oracle Solaris Shared Memory Environment

A-2

0000000380000000 38010880 38010880 - 38010880 256M rwxsR [ism shmid=0xb]
0000000C90000000 131072 131072 - 131072 4M rwxsR [ism shmid=0xb]
0000000C98000000 16 16 - 16 8K rwxsR [ism shmid=0xb]

Note:

The ps —ef command lists the background processes that are running. This
information is required to determine if an Oracle database instance is
running.

The output from the pmap –xs command shows three ism address ranges implying that
ISM is in use. If DISM locks the memory ranges, then the output shows dism address
ranges.

A.1.5 About the oradism Utility
Oracle Database uses the oradism utility to lock and unlock shared memory. The
oradism utility is automatically set up during installation. It is not required to perform
any configuration tasks to use dynamic SGA.

The process name for the oradism utility is ora_dism_sid, where sid is the system
identifier. When using DISM, this process is started during instance startup, and
automatically quits when the instance is shut down.

If a message is displayed in the alert log saying that the oradism utility is not set up
correctly, then verify that the oradism utility is located in the $ORACLE_HOME/bin directory
and that it has superuser privileges.

Note:

Optimized Shared Memory (OSM) does not use the oradism utility.

A.1.6 How Oracle Database Decides Between OSM, ISM and DISM
Oracle Database automatically uses Optimized Shared Memory (OSM) on Oracle
Solaris systems where OSM is available. See "About Optimized Shared Memory" for
more information on OSM.

On systems where OSM is not available, Oracle Database automatically selects
Intimate Shared Memory (ISM) or Dynamic Intimate Shared Memory (DISM) based on
the following criteria:

• Oracle Database uses DISM if it is available on the system, and if the value of the
SGA_MAX_SIZE initialization parameter is larger than the size required for all SGA
components combined. This enables Oracle Database to lock only the amount of
physical memory that is used.

• Oracle Database uses ISM if the entire shared memory segment is in use at
startup or if the value of the SGA_MAX_SIZE parameter equals or smaller than the
size required for all SGA components combined.

Appendix A
Oracle Solaris Shared Memory Environment

A-3

Regardless of whether Oracle Database uses ISM or DISM, it can always exchange
the memory between dynamically sizable components such as the buffer cache, the
shared pool, and the large pool after it starts an instance. Oracle Database can
relinquish memory from one dynamic SGA component and allocate it to another
component.

Because shared memory segments are not implicitly locked in memory, when using
DISM, Oracle Database explicitly locks shared memory that is currently in use at
startup. When a dynamic SGA operation uses more shared memory, Oracle Database
explicitly performs a lock operation on the memory that is put to use. When a dynamic
SGA operation releases shared memory, Oracle Database explicitly performs an
unlock operation on the memory that is freed, so that it becomes available to other
applications.

Note:

Do not set the LOCK_SGA parameter to TRUE in the server parameter file. If you
do, then Oracle Database 12c cannot start.

A.2 About Creating Solaris Resource Pools
Solaris Resource Pools improve database performance by associating a dedicated set
of CPUs to a database instance. Each database instance can only use the resources
in its resource pool.

When consolidating on a large server, you may want to restrict the database to a
specific subset of the CPU and memory. This feature makes it easy to enable CPU
and memory restrictions for an Oracle Database instance.

Use the setup_resource_pool.sh script to create Solaris Resource Pools. Download this
script from note 1928328.1 on the My Oracle Support website:

https://support.oracle.com/CSP/main/article?
cmd=show&type=NOT&id=1928328.1

A.3 About Multi-CPU Binding Functionality
You can use Multi-CPU Binding (MCB) as part of your resource management policy to
improve performance.

Multi-CPU binding (MCB) is an Oracle Solaris projects resource management
functionality that binds a project to a specific set of CPUs, but does not bind the CPUs
exclusively. MCB allows other processes also to use these CPUs, and allows
overlapping of partitions. MCB is supported on Oracle Solaris 11.3 and later.

The resource pools feature also allows binding of CPUs. However, this method
requires hard partitioning of processors in the system. Resource pools does not allow
overlapping of partitions.

You can assign, modify, or remove MCBs through Oracle Solaris projects. Use the
standard command-line tools projadd(1M) and projmod(1M) to create or modify the
project file.

Appendix A
About Creating Solaris Resource Pools

A-4

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1928328.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1928328.1

For database users, the advantages of using MCB over resource pools include:

• The ability to bind an Oracle instance to a particular NUMA location for
performance, such as, near a specific I/O or networking device.

• The ability to bind multiple Oracle instances to different cores or sockets on a host
to increase performance isolation without the need of a privileged administrator to
partition the system.

See Also:

"Using Projects to Assign, Modify, and Remove Multi-CPU Binding" and
"How to Use Projects to Assign, Modify, and Remove Multi-CPU Binding" in
Administering Resource Management in Oracle Solaris 11.3.

Appendix A
About Multi-CPU Binding Functionality

A-5

B
Administering Oracle Database on Linux

This appendix contains information about administering Oracle Database on Linux.

It contains the following topics:

• Supporting Asynchronous Input-Output

• Asynchronous Input-Output Support

• Enabling Direct Input-Output Support

• Enabling Simultaneous Multithreading

• Allocating Shared Resources

• About Creating cgroups on Linux Systems

• Overview of HugePages

Note:

Starting with Oracle Database 11g Release 2 (11.2), Linux x86-64 and IBM:
Linux on System z media does not contain Linux x86 binaries.

B.1 Supporting Asynchronous Input-Output

Note:

On Linux, Automatic Storage Management uses asynchronous Input-Output
by default. Asynchronous Input-Output is not supported for database files
stored on Network File Systems.

Oracle Database supports kernel asynchronous Input-Output. Asynchronous Input-
Output is enabled by default on raw volumes. Automatic Storage Management uses
asynchronous Input-Output by default.

By default, the DISK_ASYNCH_IO initialization parameter in the parameter file is set to
TRUE. To enable asynchronous Input-Output on file system files:

1. Ensure that all Oracle Database files are located on file systems that support
asynchronous Input-Output.

2. Set the FILESYSTEMIO_OPTIONS initialization parameter in the parameter file to ASYNCH
or SETALL.

B-1

Note:

If the file system files are managed through ODM library interface or
Direct NFS Client, asynchronous Input-Output is enabled by default.
There is no need to set FILESYSTEMIO_OPTIONS to enable asynchronous
Input-Output in these environments.

B.2 Asynchronous Input-Output Support

Note:

On Linux, Automatic Storage Management uses asynchronous Input-Output
by default. Asynchronous Input-Output is not supported for database files
stored on Network File Systems.

Oracle Database supports kernel asynchronous Input-Output. This feature is disabled
by default.

By default, the DISK_ASYNCH_IO initialization parameter in the parameter file is set to
TRUE to enable asynchronous I/O on raw devices. To enable asynchronous Input-
Output on file system files:

1. Ensure that all Oracle Database files are located on file systems that support
asynchronous Input-Output.

2. Set the FILESYSTEMIO_OPTIONS initialization parameter in the parameter file to ASYNCH
to enable asynchronous Input-Output. If you want to enable both asynchronous
Input-Output and direct Input-Output, set the FILESYSTEMIO_OPTIONS initialization
parameter in the parameter file to SETALL.

B.3 Enabling Direct Input-Output Support
Direct Input-Output support is available and supported on Linux.

To enable direct Input-Output support:

• Set the FILESYSTEMIO_OPTIONS initialization parameter to DIRECTIO.

• Set the FILESYSTEMIO_OPTIONS initialization parameter in the parameter file to SETALL,
which will enable both asynchronous Input-Output and direct Input-Output.

B.4 Enabling Simultaneous Multithreading
If Simultaneous Multithreading is enabled, then the v$osstat view reports two
additional rows corresponding to the online logical (NUM_LCPUS) and virtual CPUs
(NUM_VCPUS).

Appendix B
Asynchronous Input-Output Support

B-2

B.5 Allocating Shared Resources
To use the MEMORY_TARGET or MEMORY_MAX_TARGET feature, the following kernel parameters
must be modified.

• /dev/shm mount point should be equal in size or larger than the value of
SGA_MAX_SIZE, if set, or should be set to be at least MEMORY_TARGET or
MEMORY_MAX_TARGET, whichever is larger. For example, with MEMORY_MAX_TARGET=4GB
only set, to create a 4 GB system on the /dev/shm mount point:

– Run the following command as the root user:

mount -t tmpfs shmfs -o size=4g /dev/shm

– Ensure that the in-memory file system is mounted when the system restarts,
add an entry in the /etc/fstab file similar to the following:

 tmpfs /dev/shm tmpfs size=4g 0

• The number of file descriptors for each Oracle instance are increased by
512*PROCESSES. Therefore, the maximum number of file descriptors should be at
least this value, plus some more for the operating system requirements. For
example, if the cat /proc/sys/fs/file-max command returns 32768 and PROCESSES
are 100, you can set it to 6815744 or higher as root, to have 51200 available for
Oracle. Use one of the following options to set the value for the file-max
descriptor.

– Run the following command:

echo 6815744 > /proc/sys/fs/file-max

OR

– Modify the following entry in the /etc/sysctl.conf file and restart the system as
root.

fs.file-max = 6815744

• Per-process number of file descriptors must be at least 512. For example, as root
run the following command.

– On bash and sh:

ulimit -n

– On csh:

limit descriptors

If the preceding command returns 200, then run the following command to set the
value for the per processor file descriptors limit, for example to 1000:

– On bash and sh:

sudo sh
ulimit -n 1000

– On csh:

sudo sh
limit descriptors 1000

Appendix B
Allocating Shared Resources

B-3

• MEMORY_TARGET and MEMORY_MAX_TARGET cannot be used when LOCK_SGA is enabled.
MEMORY_TARGET and MEMORY_MAX_TARGET also cannot be used with huge pages on
Linux.

B.6 About Creating Cgroups on Linux Systems
Cgroups, or control groups, improve database performance by associating a dedicated
set of CPUs to a database instance. Each database instance can only use the
resources in its cgroup.

When consolidating on a large server, you may want to restrict the database to a
specific subset of the CPU and memory. This feature makes it easy to enable CPU
and memory restrictions for an Oracle Database instance.

Use the setup_processor_group.sh script to create cgroups. Download this script from
note 1585184.1 on the My Oracle Support website:

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1585184.1

B.7 Overview of HugePages
HugePages is a feature integrated into the Linux kernel 2.6. Enabling HugePages
makes it possible for the operating system to support memory pages greater than the
default (usually 4 KB). Using very large page sizes can improve system performance
by reducing the amount of system resources required to access page table entries.
HugePages is useful for both 32-bit and 64-bit configurations. HugePage sizes vary
from 2 MB to 256 MB, depending on the kernel version and the hardware architecture.
For Oracle Databases, using HugePages reduces the operating system maintenance
of page states, and increases Translation Lookaside Buffer (TLB) hit ratio.

Note:

Transparent Hugepages is currently not an alternative to manually configure
HugePages.

This section includes the following topics:

• Reviewing HugePages Memory Allocation

• Using HugePages on Linux

• Tuning SGA With HugePages

• Configuring HugePages on Linux

• Restrictions for HugePages Configurations

• Disabling Transparent HugePages

B.7.1 Reviewing HugePages Memory Allocation
Review this information if your operating system has HugePages enabled.

On Linux platform installations, Oracle recommends that you use HugePages to obtain
the best performance for Oracle Databases. When you upgrade Oracle Grid

Appendix B
About Creating Cgroups on Linux Systems

B-4

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1585184.1

Infrastructure and Oracle Databases on servers that have HugePages enabled, Oracle
recommends that you review your HugePages memory allocation requirements.

GIMR and HugePages Memory

Oracle Grid Infrastructure installations include the Grid Infrastructure Management
Repository (GIMR). When HugePages is configured on cluster member nodes, the
GIMR system global area (SGA) is installed into HugePages memory. The GIMR SGA
occupies up to 1 GB of HugePages memory. Oracle Grid Infrastructure starts up
before Oracle Databases installed on the cluster.

If your cluster member node operating system memory allocations to HugePages are
insufficient for the size of the SGAs for all of the Oracle Database instances on the
cluster, then you may find that one or more of your Oracle Database SGAs are
mapped to regular pages, instead of Huge Pages, which reduces expected
performance. To avoid this issue, when you plan your upgrade, ensure that the
memory you reserve for HugePages is large enough to accommodate your memory
requirements.

Allocate memory to HugePages large enough for all databases planned to run SGA on
the cluster, and to accommodate the SGA for the Grid Infrastructure Management
Repository.

B.7.2 Using HugePages on Linux
To enable Oracle Database to use large pages (sometimes called HugePages) on
Linux, set the value of the vm.nr_hugepages kernel parameter to specify the number of
large pages that you want to reserve. You must specify adequate large pages to hold
the entire SGA for the database instance. To determine the required parameter value,
divide the SGA size for the instance by the size of a large page, then round up the
result to the nearest integer.

To determine the default large page size, run the following command:

grep Hugepagesize /proc/meminfo

For example, if /proc/meminfo lists the large page size as 2 MB, and the total SGA size
for the instance is 1.6 GB, then set the value for the vm.nr_hugepages kernel parameter
to 820 (1.6 GB / 2 MB = 819.2).

B.7.3 Tuning SGA With HugePages
Without HugePages, the operating system keeps each 4 KB of memory as a page.
When it allocates pages to the database System Global Area (SGA), the operating
system kernel must continually update its page table with the page lifecycle (dirty, free,
mapped to a process, and so on) for each 4 KB page allocated to the SGA.

With HugePages, the operating system page table (virtual memory to physical memory
mapping) is smaller, because each page table entry is pointing to pages from 2 MB to
256 MB.

Also, the kernel has fewer pages whose lifecycle must be monitored. For example, if
you use HugePages with 64-bit hardware, and you want to map 256 MB of memory,
you may need one page table entry (PTE). If you do not use HugePages, and you
want to map 256 MB of memory, then you must have 256 MB * 1024 KB/4 KB = 65536
PTEs.

Appendix B
Overview of HugePages

B-5

HugePages provides the following advantages:

• Increased performance through increased TLB hits

• Pages are locked in memory and never swapped out, which provides RAM for
shared memory structures such as SGA

• Contiguous pages are preallocated and cannot be used for anything else but for
System V shared memory (for example, SGA)

• Less bookkeeping work for the kernel for that part of virtual memory because of
larger page sizes

B.7.4 Configuring HugePages on Linux
Complete the following steps to configure HugePages on the computer:

1. Run the following command to determine if the kernel supports HugePages:

$ grep Huge /proc/meminfo

2. Some Linux systems do not support HugePages by default. For such systems,
build the Linux kernel using the CONFIG_HUGETLBFS and CONFIG_HUGETLB_PAGE
configuration options. CONFIG_HUGETLBFS is located under File Systems and
CONFIG_HUGETLB_PAGE is selected when you select CONFIG_HUGETLBFS.

3. Edit the memlock setting in the /etc/security/limits.conf file. The memlock setting is
specified in KB, and the maximum locked memory limit should be set to at least 90
percent of the current RAM when HugePages memory is enabled and at least
3145728 KB (3 GB) when HugePages memory is disabled. For example, if you
have 64 GB RAM installed, then add the following entries to increase the
maximum locked-in-memory address space:

* soft memlock 60397977
* hard memlock 60397977

You can also set the memlock value higher than your SGA requirements.

4. Log in as oracle user again and run the ulimit -l command to verify the new
memlock setting:

$ ulimit -l
60397977

5. Run the following command to display the value of Hugepagesize variable:

$ grep Hugepagesize /proc/meminfo

6. Complete the following procedure to create a script that computes recommended
values for hugepages configuration for the current shared memory segments:

a. Create a text file named hugepages_settings.sh.

b. Add the following content in the file:

#!/bin/bash
#
hugepages_settings.sh
#
Linux bash script to compute values for the
recommended HugePages/HugeTLB configuration
#
Note: This script does calculation for all shared memory
segments available when the script is run, no matter it

Appendix B
Overview of HugePages

B-6

is an Oracle RDBMS shared memory segment or not.
Check for the kernel version
KERN=`uname -r | awk -F. '{ printf("%d.%d\n",$1,$2); }'`
Find out the HugePage size
HPG_SZ=`grep Hugepagesize /proc/meminfo | awk {'print $2'}`
Start from 1 pages to be on the safe side and guarantee 1 free HugePage
NUM_PG=1
Cumulative number of pages required to handle the running shared memory
segments
for SEG_BYTES in `ipcs -m | awk {'print $5'} | grep "[0-9][0-9]*"`
do
 MIN_PG=`echo "$SEG_BYTES/($HPG_SZ*1024)" | bc -q`
 if [$MIN_PG -gt 0]; then
 NUM_PG=`echo "NUM_PG+MIN_PG+1" | bc -q`
 fi
done
Finish with results
case $KERN in
 '2.4') HUGETLB_POOL=`echo "NUM_PG*HPG_SZ/1024" | bc -q`;
 echo "Recommended setting: vm.hugetlb_pool = $HUGETLB_POOL" ;;
 '2.6'|'3.8') echo "Recommended setting: vm.nr_hugepages = $NUM_PG" ;;
 *) echo "Unrecognized kernel version $KERN. Exiting." ;;
esac
End

c. Run the following command to change the permission of the file:

$ chmod +x hugepages_settings.sh

7. Run the hugepages_settings.sh script to compute the values for hugepages
configuration:

$./hugepages_settings.sh

Note:

Before running this script, ensure that all the applications that use
hugepages run.

8. Set the following kernel parameter, where value is the HugePages value that you
determined in step 7:

sysctl -w vm.nr_hugepages=value

9. To ensure that HugePages is allocated after system restarts, add the following
entry to the /etc/sysctl.conf file, where value is the HugePages value that you
determined in step 7:

vm.nr_hugepages=value

10. Run the following command to check the available hugepages:

$ grep Huge /proc/meminfo

11. Restart the instance.

12. Run the following command to check the available hugepages (1 or 2 pages free):

$ grep Huge /proc/meminfo

Appendix B
Overview of HugePages

B-7

Note:

If you cannot set your HugePages allocation using nr_hugepages, then
your available memory may be fragmented. Restart your server for the
Hugepages allocation to take effect.

B.7.5 Restrictions for HugePages Configurations
HugePages has the following limitations:

• You must unset both the MEMORY_TARGET and MEMORY_MAX_TARGET initialization
parameters. For example, to unset the parameters for the database instance, use
the command ALTER SYSTEM RESET.

• Automatic Memory Management (AMM) and HugePages are not compatible.
When you use AMM, the entire SGA memory is allocated by creating files
under /dev/shm. When Oracle Database allocates SGA with AMM, HugePages are
not reserved. To use HugePages on Oracle Database 18c, You must disable
AMM.

• If you are using VLM in a 32-bit environment, then you cannot use HugePages for
the Database Buffer cache. You can use HugePages for other parts of the SGA,
such as shared_pool, large_pool, and so on. Memory allocation for VLM (buffer
cache) is done using shared memory file systems (ramfs/tmpfs/shmfs). Memory file
systems do not reserve or use HugePages.

• HugePages are not subject to allocation or release after system startup, unless a
system administrator changes the HugePages configuration, either by modifying
the number of pages available, or by modifying the pool size. If the space required
is not reserved in memory during system startup, then HugePages allocation fails.

• Ensure that HugePages is configured properly as the system may run out of
memory if excess HugePages is not used by the application.

• If there is insufficient HugePages when an instance starts and the initialization
parameter use_large_pages is set to only, then the database fails to start and an
alert log message provides the necessary information on Hugepages.

B.7.6 Disabling Transparent HugePages
Oracle recommends that you disable Transparent HugePages before you start
installation.

Transparent HugePages memory differs from standard HugePages memory because
the kernel khugepaged thread allocates memory dynamically during runtime. Standard
HugePages memory is pre-allocated at startup, and does not change during runtime.

Note:

Although Transparent HugePages is disabled on UEK2 and later UEK
kernels, Transparent HugePages may be enabled by default on your Linux
system.

Appendix B
Overview of HugePages

B-8

Transparent HugePages memory is enabled by default with Red Hat Enterprise Linux
6, Red Hat Enterprise Linux 7, SUSE 11, Oracle Linux 6, and Oracle Linux 7 with
earlier releases of Oracle Linux with the Unbreakable Enterprise Kernel 2 (UEK2)
kernels.

Transparent HugePages can cause memory allocation delays during runtime. To avoid
performance issues, Oracle recommends that you disable Transparent HugePages on
all Oracle Database servers. Oracle recommends that you instead use standard
HugePages for enhanced performance.

To check if Transparent HugePages is enabled, run one of the following commands as
the root user:

Red Hat Enterprise Linux kernels:

cat /sys/kernel/mm/redhat_transparent_hugepage/enabled

Other kernels:

cat /sys/kernel/mm/transparent_hugepage/enabled

The following is a sample output that shows Transparent HugePages are being used
as the [always] flag is enabled.

[always] never

Note:

If Transparent HugePages is removed from the kernel, then neither /sys/
kernel/mm/transparent_hugepage nor /sys/kernel/mm/
redhat_transparent_hugepage files exist.

To disable Transparent HugePages:

1. For Oracle Linux 6 or earlier releases, add the following entry to the kernel boot
line in the /etc/grub.conf file:

transparent_hugepage=never

For example:

title Oracle Linux Server (2.6.32-300.25.1.el6uek.x86_64)
 root (hd0,0)
 kernel /vmlinuz-2.6.32-300.25.1.el6uek.x86_64 ro root=LABEL=/
transparent_hugepage=never
 initrd /initramfs-2.6.32-300.25.1.el6uek.x86_64.img

The file name may vary for Oracle Linux 7 or later operating systems. Check your
operating system documentation for the exact file name and the steps to disable
Transparent HugePages.

For example, for Oracle Linux 7.3, the procedure to disable Transparent
HugePages involves editing the /etc/default/grub file and then running the
command grub2-mkconfig.

2. Restart the system to make the changes permanent.

Appendix B
Overview of HugePages

B-9

C
Administering Oracle Database on IBM AIX
on POWER Systems (64-Bit)

This appendix contains information about administering Oracle Database on IBM AIX
on POWER Systems (64-bit).

It includes the following topics:

• Memory and Paging

• Disk Input-Output Issues

• CPU Scheduling and Process Priorities

• AIXTHREAD_SCOPE Environment Variable

• Network Information Service external naming support

• Configuring IBM Java Secure Socket Extension Provider with Oracle JDBC Thin
Driver

C.1 Memory and Paging
Memory contention occurs when processes require more memory than is available. To
cope with the shortage, the system pages the programs and data between memory
and disks.

This section contains the following topics:

• Kernel Parameters

• Allocating Sufficient Paging Space

• Controlling Paging

• Setting the Database Block Size

• Tuning the Log Archive Buffers

• Input-Output Buffers and SQL*Loader

C.1.1 Kernel Parameters

Oracle recommends to use the default AIX kernel settings. You must adjust the kernel
settings as appropriately recommended by IBM support only.

Note:

Adjusting the Restricted Tunables parameter without the guidance from IBM
support can have an undesirable impact on the system stability and
performance.

C-1

C.1.2 Allocating Sufficient Paging Space
Inadequate paging space (swap space) usually causes the system to stop responding
or show very slow response times. On IBM AIX on POWER Systems (64-bit), you can
dynamically add paging space on raw disk partitions. The amount of paging space you
should configure depends on the amount of physical memory present and the paging
space requirements of the applications. Use the lsps command to monitor paging
space use and the vmstat command to monitor system paging activities. To increase
the paging space, use the smit pgsp command.

If paging space is preallocated, then Oracle recommends that you set the paging
space to a value larger than the amount of RAM. But on IBM AIX on POWER Systems
(64-bit), paging space is not allocated until required. The system uses swap space
only if it runs out of real memory. If the memory is sized correctly, then there is no
paging and the page space can be small. Workloads where the demand for pages
does not fluctuate significantly perform well with a small paging space. Workloads
likely to have peak periods of increased paging require enough paging space to
handle the peak number of pages.

As a general rule, an initial setting for the paging space is half the size of RAM plus 4
GB, up to the size of a single internal disk. Monitor the paging space use with the lsps
-a command, and monitor the system paging activities using the vmstat command. The
metric percent used in the output of lsps -a is typically less than 25 percent on a
healthy system. A properly sized deployment requires very little paging space because
an excessive amount of swapping severely impacts performance. Excessive use of
paging space and swapping indicates that the RAM on the system may be undersized.

Caution:

Do not undersize the paging space. If you do, then the system terminates
active processes when it runs out of space. However, oversizing the paging
space has little or no negative impact.

Oracle documentation suggests the following values as a starting point for an Oracle
Database:

RAM Swap Space

Between 1 GB and 2 GB 1.5 times the size of RAM

Between 2 GB and 16 GB Equal to the size of RAM

More than 16 GB 16 GB

The RAM and swap space values for Oracle Grid Infrastructure are as follows:

• Between 4 GB RAM and 16 GB RAM, the swap space must be equal to the size of
RAM.

• For more than 16 GB RAM, the swap space must be equal to 16 GB.

Because the individual server environment varies, some additional memory may be
warranted in an Oracle Database 18c environment, based on the increased 18c
memory footprint and increasing page size from 4 KB to 64 KB. The workload may
need to be rebalanced to reduce paging, which impacts system performance.

Appendix C
Memory and Paging

C-2

C.1.3 Controlling Paging
Constant and excessive paging indicates that the real memory is over-committed. In
general, you should:

• Avoid constant paging unless the system is equipped with very fast expanded
storage that makes paging between memory and expanded storage much faster
than Oracle Database can read and write data between the SGA and disks.

• Allocate limited memory resource to where it is most beneficial to system
performance. It is sometimes a recursive process of balancing the memory
resource requirements and trade-offs.

• If memory is not adequate, then build a prioritized list of memory-requiring
processes and elements of the system. Assign memory to where the performance
gains are the greatest. A prioritized list may look like the following:

1. Operating System and RDBMS kernels (to include SGA and its components,
buffer cache, and shared pool)

2. User and application processes

For example, suppose you query Oracle Database dynamic performance tables and
views and find that both the shared pool and database buffer cache require more
memory. Then, assigning the limited spare memory to the shared pool may be more
beneficial than assigning it to the database block buffer caches. These choices
depend on the nature or shape of the database load.

The following IBM AIX on POWER Systems (64-bit) commands provide paging status
and statistics:

• vmstat -s

• vmstat interval [repeats]

• sar -r interval [repeats]

C.1.4 Setting the Database Block Size
You can configure Oracle Database block size for better Input-Output throughput. On
IBM AIX on POWER Systems (64-bit), you can set the value of the DB_BLOCK_SIZE
initialization parameter to between 2 KB and 32 KB, with a default of 4 KB. If Oracle
Database is installed on a journaled file system, then the block size should be a
multiple of the file system block size (4 KB on JFS, 16 KB to 1 MB on IBM Spectrum
Scale (GPFS)). For databases on raw partitions, Oracle Database block size is a
multiple of the operating system physical block size (512 bytes on IBM AIX on
POWER Systems (64-bit)).

Oracle recommends smaller Oracle Database block sizes (2 KB or 4 KB) for online
transaction processing or mixed workload environments and larger block sizes (8 KB,
16 KB, or 32 KB) for decision support system workload environments.

C.1.5 Tuning the Log Archive Buffers
By increasing the LOG_BUFFER size, you may be able to improve the speed of archiving
the database, particularly if transactions are long or numerous. Monitor the log file
Input-Output activity and system throughput to determine the optimum LOG_BUFFER size.

Appendix C
Memory and Paging

C-3

Tune the LOG_BUFFER parameter carefully to ensure that the overall performance of
normal database activity does not degrade.

For improved performance, create separate file systems for redo logs and control files
(or a single file system for both), with an agblksize of 512 bytes rather than the default
of 4 KB.

C.1.6 Input-Output Buffers and SQL*Loader
For high-speed data loading, such as using the SQL*Loader direct path option in
addition to loading data in parallel, the CPU spends most of its time waiting for Input-
Output to complete. By increasing the number of buffers, you can maximize CPU
usage, and by doing this, increase overall throughput.

The number of buffers (set by the SQL*Loader BUFFERS parameter) you choose
depends on the amount of available memory and how much you want to maximize
CPU usage.

The performance gains depend on CPU usage and the degree of parallelism that you
use when loading data.

C.2 Disk Input-Output Issues
Disk Input-Output contention can result from poor memory management (with
subsequent paging and swapping), or poor distribution of tablespaces and files across
disks.

Ensure that the Input-Output activity is distributed evenly across multiple disk drives by
using IBM AIX on POWER Systems (64-bit) utilities such as filemon, sar, iostat, and
other performance tools to identify disks with high Input-Output activity.

This section contains the following topics:

• IBM AIX on POWER Systems (64-Bit) Logical Volume Manager

• Using Journaled File Systems Compared to Raw Logical Volumes

• Using Asynchronous Input-Output

• Input-Output Slaves

• Using the DB_FILE_MULTIBLOCK_READ_COUNT Parameter

• Tuning Disk Input-Output Pacing

• Resilvering with Oracle Database

C.2.1 IBM AIX on POWER Systems (64-Bit) Logical Volume Manager
The IBM AIX on POWER Systems (64-bit) Logical Volume Manager can stripe data
across multiple disks to reduce disk contention. The primary objective of striping is to
achieve high performance when reading and writing large sequential files. With
improved storage subsystems, it is no longer recommended to use LVM striping.
Oracle recommends to use the default striping by the storage subsystems. The
operating system is no longer aware about where the data resides physically as the
LUNs presented to an AIX partition are logical and not physical.

Appendix C
Disk Input-Output Issues

C-4

C.2.2 Using Journaled File Systems Compared to Raw Logical
Volumes

Address the following considerations when deciding whether to use journaled file
systems or raw logical volumes:

• File systems are continually being improved, as are various file system
implementations.

• Different vendors implement the file system layer in different ways to capitalize on
the strengths of different disks. This makes it difficult to compare file systems
across platforms.

• The Direct Input-Output and Concurrent Input-Output features included in IBM AIX
on POWER Systems (64-bit) improve file system performance to a level
comparable to raw logical volumes.

• In earlier versions of IBM AIX on POWER Systems (64-bit), file systems supported
only buffered read and write and added extra contention because of imperfect
inode locking. These two issues are solved by the JFS2 Concurrent Input-Output
feature and the Spectrum Scale (GPFS)Direct Input-Output feature.

• The introduction of more powerful Logical Volume Manager interfaces
substantially reduces the tasks of configuring and backing up logical disks based
on raw logical volumes.

• Oracle ASM works best when you add raw disk devices to disk groups. If you are
using Oracle ASM, then do not use Logical Volume Manager for striping. Oracle
ASM implements striping and mirroring.

Note:

To use the Oracle RAC option, you must place data files on an Oracle ASM
disk group or on a Spectrum Scale (GPFS) file system. You cannot use JFS
or JFS2. Direct Input-Output is implicitly enabled when you use Spectrum
Scale (GPFS).

File System Options

IBM AIX on POWER Systems (64-bit) includes Direct Input-Output and Concurrent
Input-Output support. Direct Input-Output and Concurrent Input-Output support
enables database files to exist on file systems while bypassing the operating system
buffer cache and removing inode locking operations that are redundant with the
features provided by Oracle Database.

The following table lists file systems available on IBM AIX on POWER Systems (64-
bit) and the recommended setting:

File System Option Description

JFS dio Concurrent Input-Output is not available on JFS. Direct Input-
Output is available, but performance is degraded compared to
JFS2 with Concurrent Input-Output.

Appendix C
Disk Input-Output Issues

C-5

File System Option Description

JFS large file none Oracle does not recommend using JFS large file for Oracle
Database because its 128 KB alignment constraint prevents
you from using Direct Input-Output.

JFS2 cio Concurrent Input-Output is a better setting than Direct Input-
Output on JFS2, because it provides support for multiple
concurrent readers and writers on the same file. However, due
to IBM AIX on POWER Systems (64-bit) restrictions on JFS2/
CIO, Concurrent Input-Output is intended to be used only with
Oracle data files, control files, and log files. It should be
applied only to file systems that are dedicated to such a
purpose. For the same reason, the Oracle home directory is
not supported on a JFS2 file system mounted with the CIO
option. For example, during installation, if you inadvertently
specify that the Oracle home directory is on a JFS2 file system
mounted with the CIO option, then while trying to relink Oracle,
you may encounter the following error:

"ld: 0711-866 INTERNAL ERROR: Output symbol table size
miscalculated"

Note: For Oracle Database 11g Release 2 (11.2.0.2) and later,
on IBM AIX on POWER Systems (64-bit) 6.1 systems and
newer, Oracle recommends that you do not use the CIO mount
option on a JFS2 file system. For the latest Oracle Database
releases, it is not necessary to use the CIO mount option
because, Oracle opens the filesystem with the O_CIOR option
internally. This gives the benefits of CIO while allowing other
applications to open the Oracle data files in read only mode
without the O_CIO option.

Spectrum
Scale (GPFS)

NA Oracle Database silently enables Direct Input-Output on
Spectrum Scale for optimum performance. Spectrum Scale
Direct Input-Output already supports multiple readers and
writers on multiple nodes. Therefore, Direct Input-Output and
Concurrent Input-Output are the same thing on Spectrum
Scale.

Considerations for JFS and JFS2

If you are placing Oracle Database logs on a JFS2 file system, then the optimal
configuration is to create the file system using the agblksize=512 option and to mount it
with the CIO option.

Before Oracle Database 12c, Direct Input-Output and Concurrent Input-Output could
not be enabled at the file level on JFS/JFS2. Therefore, the Oracle home directory and
data files had to be placed in separate file systems for optimal performance. The
Oracle home directory was placed on a file system mounted with default options, with
the data files and logs on file systems mounted using the DIO or CIO options.

With Oracle Database 12c, you can enable Direct Input-Output and Concurrent Input-
Output on JFS/JFS2 at the file level. You can do this by setting the
FILESYSTEMIO_OPTIONS parameter in the server parameter file to SETALL or DIRECTIO. This
enables Concurrent Input-Output on JFS2 and Direct Input-Output on JFS for all data
file Input-Output. Because the DIRECTIO setting disables asynchronous Input-Output it
should normally not be used. As a result of this 12c feature, you can place data files
on the same JFS/JFS2 file system as the Oracle home directory and still use Direct
Input-Output or Concurrent Input-Output for improved performance. As mentioned

Appendix C
Disk Input-Output Issues

C-6

earlier, you should still place Oracle Database logs on a separate JFS2 file system for
optimal performance.

See Also:

Oracle Architecture and Tuning on AIX v2.30 for more information

Considerations for Spectrum Scale

If you are using Spectrum Scale (GPFS), then you can use the same file system for all
purposes. This includes using it for the Oracle home directory and for storing data files
and logs. For optimal performance, you should use a large Spectrum Scale block size
(typically, at least 512 KB). Spectrum Scale is designed for scalability, and there is no
requirement to create multiple Spectrum Scale file systems as long as the amount of
data fits in a single Spectrum Scale file system.

C.2.3 Using Asynchronous Input-Output
Oracle Database takes full advantage of asynchronous Input-Output provided by IBM
AIX on POWER Systems (64-bit), resulting in faster database access.

IBM AIX on POWER Systems (64-bit) support asynchronous Input-Output for
database files created on file system partitions. When using asynchronous Input-
Output on file systems, the kernel database processes (aioserver) control each
request from the time a request is taken off the queue to the time it is completed. The
number of aioserver servers determines the number of asynchronous Input-Output
requests that can be processed in the system concurrently. There is no need to adjust
the AIO tunables as the defaults for AIO tunables have been significantly increased.

C.2.4 Input-Output Slaves
Input-Output Slaves are specialized Oracle processes that perform only Input-Output.
They are rarely used on IBM AIX on POWER Systems (64-bit), because asynchronous
Input-Output is the default and recommended way for Oracle to perform Input-Output
operations on IBM AIX on POWER Systems (64-bit). Input-Output Slaves are
allocated from shared memory buffers. Input-Output Slaves use the initialization
parameters listed in the following table:

Parameter Range of Values Default Value

DISK_ASYNCH_IO true/false true

TAPE_ASYNCH_IO true/false true

BACKUP_TAPE_IO_SLAVES true/false false

DBWR_IO_SLAVES 0 - 999 0

DB_WRITER_PROCESSES 1-20 1

Generally, you do not adjust the parameters in the preceding table. However, on large
workloads, the database writer may become a bottleneck. If it does, then increase the
value of DB_WRITER_PROCESSES. As a general rule, do not increase the number of
database writer processes above one for each pair of CPUs in the system or partition.

Appendix C
Disk Input-Output Issues

C-7

There are times when you must turn off asynchronous I/O. For example, if instructed
to do so by Oracle Support for debugging. You can use the DISK_ASYNCH_IO and
TAPE_ASYNCH_IO parameters to switch off asynchronous I/O for disk or tape devices.
TAPE_ASYNCH_IO support is only available when the Media Manager software supports it
and for Recovery Manager, if BACKUP_TAPE_IO_SLAVES is true.

Set the DBWR_IO_SLAVES parameter to greater than 0 only if the DISK_ASYNCH_IO
parameter is set to false. Otherwise, the database writer process becomes a
bottleneck. In this case, the optimal value on IBM AIX on POWER Systems (64-bit) for
the DBWR_IO_SLAVES parameter is 4.

C.2.5 Using the DB_FILE_MULTIBLOCK_READ_COUNT Parameter
When using Direct Input-Output or Concurrent Input-Output with Oracle Database 18c,
the IBM AIX on POWER Systems (64-bit) file system does not perform any read-
ahead on sequential scans. For this reason the DB_FILE_MULTIBLOCK_READ_COUNT value in
the server parameter file should be increased when Direct Input-Output or Concurrent
Input-Output is enabled on Oracle data files. The read ahead is performed by Oracle
Database as specified by the DB_FILE_MULTIBLOCK_READ_COUNT initialization parameter.

Setting a large value for the DB_FILE_MULTIBLOCK_READ_COUNT initialization parameter
usually yields better Input-Output throughput on sequential scans. On IBM AIX on
POWER Systems (64-bit), this parameter ranges from 1 to 512, but using a value
higher than 16 usually does not provide additional performance gain.

Set this parameter so that its value when multiplied by the value of the DB_BLOCK_SIZE
parameter produces a number larger than the Logical Volume Manager stripe size.
Such a setting causes more disks to be used.

C.2.6 Tuning Disk Input-Output Pacing
Disk Input-Output pacing is an IBM AIX on POWER Systems (64-bit) mechanism that
enables the system administrator to limit the number of pending Input-Output requests
to a file. This prevents disk Input-Output intensive processes from saturating the CPU.
Therefore, the response time of interactive and CPU-intensive processes does not
deteriorate.

You can achieve disk Input-Output pacing by adjusting two system parameters: the
high-water mark and the low-water mark. When a process writes to a file that already
has a pending high-water mark Input-Output request, the process is put to sleep. The
process wakes up when the number of outstanding Input-Output requests falls lower
than or equals the low-water mark.

Starting from IBM AIX 6.1 version, the file systems and AIX I/O subsystem are
modified to accommodate large surges of file system I/O. In addition to these changes,
the default values for I/O pacing have been modified. The default values for IBM AIX
6.1 version and earlier was 0 to no I/O pacing. The default values for IBM AIX 6.1
version and later are as follows:

• minpout=4096

• maxpout=8193

Appendix C
Disk Input-Output Issues

C-8

C.2.7 Resilvering with Oracle Database
If you disable mirror write consistency for an Oracle data file allocated on a raw logical
volume, then the Oracle Database crash recovery process uses resilvering to recover
after a system failure. This resilvering process prevents database inconsistencies or
corruption.

During crash recovery, if a data file is allocated on a logical volume with multiple
copies, then the resilvering process performs a checksum on the data blocks of all the
copies. It then performs one of the following:

• If the data blocks in a copy have valid checksums, then the resilvering process
uses that copy to update the copies that have invalid checksums.

• If all copies have blocks with invalid checksums, then the resilvering process
rebuilds the blocks using information from the redo log file. It then writes the data
file to the logical volume and updates all the copies.

On IBM AIX on POWER Systems (64-bit), the resilvering process works only for data
files allocated on raw logical volumes for which mirror write consistency is disabled.
Resilvering is not required for data files on mirrored logical volumes with mirror write
consistency enabled, because mirror write consistency ensures that all copies are
synchronized.

If the system fails while you are upgrading an earlier release of Oracle Database that
used data files on logical volumes for which mirror write consistency was disabled,
then run the syncvg command to synchronize the mirrored logical volume before
starting Oracle Database. If you do not synchronize the mirrored logical volume before
starting the database, then Oracle Database may read incorrect data from a logical
volume copy.

Note:

If a disk drive fails, then resilvering does not occur. You must run the syncvg
command before you can reactivate the logical volume.

Caution:

Oracle supports resilvering for data files only. Do not disable mirror write
consistency for redo log files.

C.3 CPU Scheduling and Process Priorities
The CPU is another system component for which processes may contend. Although
the IBM AIX on POWER Systems (64-bit) kernel allocates CPU effectively most of the
time, many processes compete for CPU cycles. If the system has multiple CPU (SMP),
then there may be different levels of contention on each CPU.

Appendix C
CPU Scheduling and Process Priorities

C-9

C.4 AIXTHREAD_SCOPE Environment Variable
Oracle recommends using IBM AIX 7.1 version and IBM AIX 6.1 default (system wide
scope) setting of the AIXTHREAD_SCOPE environment variable to S (1:1).

See Also:

Thread tuning for additional information about thread tuning

C.5 Network Information Service external naming support
Network Information Service external naming adapter is supported on IBM AIX on
POWER Systems (64-bit). To configure and use Network Information Service external
naming, refer to Oracle Database Net Services Administrator's Guide.

C.6 Configuring IBM Java Secure Socket Extension
Provider with Oracle JDBC Thin Driver

IBM Java 1.6 SR 16 is shipped with Oracle Database 12c Release 1 (12.1). If you
want to configure SSL on IBM JDK, then you may face the following issues:

• IBM JSSE does not support SSLv2Hello SSL protocol. However, it accepts the
SSLv2Hello message from the client encapsulating

SSLv3 or TLS1.0 hello message.
For SSL clients using Thin JDBC connectors, you must set oracle.net.ss1_version
system property to select TLSv1 SSL protocol or SSLv3 SSL protocol since SSLv3 is
not recommended anymore after the POODLE security issue. System property
recommendation is to set TLSV1.0, TLSV1.1, and TLSV1.2 on recommending SSLv3, or
the connection will fail.

• IBM JSSE does not allow anonymous ciphers

For SSL clients using anonymous ciphers, you must replace the Default Trust
Manager with a Custom Trust Manager that accepts anonymous ciphers.

See Also:

• Padding Oracle On Downgraded Legacy Encryption (POODLE) security
vulnerability for more information

• IBM JSSE documentation for more information about creating and
installing Custom Trust Manager

Appendix C
AIXTHREAD_SCOPE Environment Variable

C-10

D
Administering Oracle Database on HP-UX

This appendix provides information about administering Oracle Database on HP-UX.

It contains the following topics:

• HP-UX Shared Memory Segments for an Oracle Instance

• HP-UX SCHED_NOAGE Scheduling Policy

• Lightweight Timer Implementation

• Asynchronous Input-Output

• Large Memory Allocations and Oracle Database Tuning

• CPU_COUNT Initialization Parameter and HP-UX Dynamic Processor
Reconfiguration

• Network Information Service external naming support

• Activating and Setting Expanded Host Names and Node Names

D.1 HP-UX Shared Memory Segments for an Oracle
Instance

When an Oracle Database instance starts, it creates memory segments by dividing the
shared memory allocated for creating the Oracle System Global Area (SGA) by the
value of the HP-UX shmmax kernel parameter. For example, if 64 GB of shared memory
is allocated for a single Oracle instance and the value of the shmmax parameter is 1 GB,
then Oracle Database creates 64 shared memory segments for that instance.

Performance degradation can occur when an Oracle instance creates multiple shared
memory segments. This is because each shared memory segment receives a unique
protection key when Oracle Database creates the instance. The number of protection
keys available on the system architecture for HP-UX Itanium is 14.

If the Oracle instance creates more shared memory segments than the number of
protection keys, then the HP-UX operating system displays protection key faults.

Oracle recommends that you set the shmmax parameter value to the amount of
available physical memory on the system. Doing this ensures that the entire shared
memory for a single Oracle instance is assigned to one shared memory segment and
the instance requires only one protection key.

To display the list of active shared memory segments on the system, run the following
command:

$ ipcs -m

If Oracle Database creates more segments for the instance than the number of
protection keys, then increase the value of the shmmax kernel parameter.

D-1

See Also:

Oracle Database Installation Guide for more information about the
recommended minimum kernel parameter values

D.2 HP-UX SCHED_NOAGE Scheduling Policy
On HP-UX, most processes use a time-sharing scheduling policy. Time sharing can
have detrimental effects on Oracle performance by descheduling an Oracle process
during critical operations, for example, when it is holding a latch. HP-UX has a
modified scheduling policy, referred to as SCHED_NOAGE, that specifically addresses this
issue. Unlike the normal time-sharing policy, a process scheduled using SCHED_NOAGE
does not increase or decrease in priority, nor is it preempted.

This feature is suited to online transaction processing environments because online
transaction processing environments can cause competition for critical resources. The
use of the SCHED_NOAGE policy with Oracle Database can increase performance by 10
percent or more in online transaction processing environments.

The SCHED_NOAGE policy does not provide the same level of performance gains in
decision support environments because there is less resource competition. Because
each application and server environment is different, you should test and verify that
the environment benefits from the SCHED_NOAGE policy. When using SCHED_NOAGE, Oracle
recommends that you exercise caution in assigning highest priority to Oracle
processes. Assigning highest SCHED_NOAGE priority to Oracle processes can exhaust
CPU resources on the system, causing other user processes to stop responding.

D.2.1 Enabling SCHED_NOAGE for Oracle Database
To permit Oracle Database to use the SCHED_NOAGE scheduling policy, the OSDBA
group (typically, the dba group) must have the RTSCHED and RTPRIO privileges to change
the scheduling policy and set the priority level for Oracle processes. To give the dba
group these privileges:

1. Log in as the root user.

2. Using any text editor, open the /etc/privgroup file, or create it if necessary.

3. Add or edit the following line, which begins with the name of the OSDBA group,
specifying the privileges RTPRIO and RTSCHED that you want to grant to this group
every time the system restarts:

dba RTPRIO RTSCHED

4. Save the file, and quit the text editor.

5. Enter the following command to grant the privileges to the OSDBA group:

/usr/sbin/setprivgrp -f /etc/privgroup

6. Enter the following command to verify that the privileges are set correctly:

/usr/bin/getprivgrp dba

Add the HPUX_SCHED_NOAGE initialization parameter to the parameter file for each
instance, setting the parameter to an integer value to specify process priority levels.
The supported range of values is 178 to 255. Lower values represent higher priorities.

Appendix D
HP-UX SCHED_NOAGE Scheduling Policy

D-2

The default value of HPUX_SCHED_NOAGE initialization parameter is 178 for all Oracle
processes. For LMS processes, this can be changed by setting the initialization
parameter _os_sched_high_priority. If the parameter _os_sched_high_priority is
between 31 and 2, LMS processes run with SCHED_RR at the set priority. If the
parameter value is between 178 and 255, the processes run at the set value with
SCHED_NOAGE. However, LMS does not run at priority level less than the value of
HPUX_SCHED_NOAGE.

If the HPUX_SCHED_NOAGE parameter setting is out of range, then Oracle Database
automatically sets the parameter to a permissible value and continues with the
SCHED_NOAGE policy with the new value. It also generates a message in the
alert_sid.log file about the new setting. Whenever the highest priority is assigned to
Oracle processes, either by the user or by automatic readjustment, Oracle Database
generates a message in the alert_sid.log file warning about the possibility of
exhaustion of CPU resources on the system. Oracle recommends that you set the
parameter to assign the priority level you want for Oracle processes.

See Also:

The HP-UX documentation, the rtsched(1) man page, and the rtsched(2)
man page for more information about priority policies and priority ranges

D.3 Lightweight Timer Implementation
With Oracle Database 11g, you can collect run-time statistics always if the dynamic
initialization parameter STATISTICS_LEVEL is set to TYPICAL (default) or ALL. This
parameter setting implicitly sets the TIMED_STATISTICS initialization parameter to true.
Oracle Database on HP-UX systems uses the gethrtime() system library call to
calculate elapsed times during the collection of the statistics. The use of this
lightweight system library call enables you to collect run-time statistics always while
running an Oracle instance, without affecting performance.

This system library call can provide a performance improvement of up to 10 percent
over an Oracle release that does not use the gethrtime() system library call when the
TIMED_STATISTICS initialization parameter is explicitly set to true. In addition, there is no
negative impact on the online transaction processing performance of an Oracle
Database while using the gethrtime() system library call to collect run-time statistics
always.

D.4 Asynchronous Input-Output
The asynchronous Input-Output pseudo-driver on HP-UX enables Oracle Database to
perform Input-Output to raw disk partitions using an asynchronous method, resulting in
less Input-Output overhead and higher throughput. You can use the asynchronous
Input-Output pseudo-driver on both HP-UX servers and workstations.

This section contains the following topics:

• Granting MLOCK Privilege

• Implementing Asynchronous Input-Output

• Verifying Asynchronous Input-Output

Appendix D
Lightweight Timer Implementation

D-3

• Asynchronous Flag in SGA

D.4.1 Granting MLOCK Privilege
To permit Oracle Database to process asynchronous Input-Output operations, the
OSDBA group (dba) must have the MLOCK privilege. To give the dba group the MLOCK
privilege:

1. Log in as the root user.

2. Using any text editor, open the /etc/privgroup file, or create it if necessary.

3. Add or edit the following line, which begins with the name of the OSDBA group,
specifying the privilege MLOCK:

Note:

You must use only one line to specify the privileges for a particular group
in this file. If the file already contains a line for the dba group, then add
the MLOCK privilege on the same line.

dba RTPRIO RTSCHED MLOCK

4. Save the file, and quit the text editor.

5. Enter the following command to grant the privileges to the OSDBA group:

/usr/sbin/setprivgrp -f /etc/privgroup

6. Enter the following command to verify that the privileges are set correctly:

/usr/bin/getprivgrp dba

D.4.2 Implementing Asynchronous Input-Output
To use asynchronous Input-Output on HP-UX, you must use an Automatic Storage
Management disk group that uses raw partitions as the storage option for database
files.

See Also:

Oracle Database Installation Guide for more information about configuring
Automatic Storage Management and raw logical volumes on HP-UX systems

Before you can implement asynchronous Input-Output with either storage option, you
must use the System Administrator Management utility to configure the asynchronous
disk driver into the HP-UX kernel.

Appendix D
Asynchronous Input-Output

D-4

Note:

In Oracle Database 11g Release 1, you did not have to set DISK_ASYNCH_IO
parameter to FALSE on a file system. However, starting with Oracle Database
11g Release 2, if database uses file system for storing the database files,
then ensure that you set initialization parameter DISK_ASYNCH_IO to FALSE. By
default the value of DISK_ASYNCH_IO is TRUE.

The DISK_ASYNCH_IO parameter must be set to TRUE only when raw partitions
are used for storing database files.

To add the asynchronous disk driver and configure the kernel by using the System
Administrator Management utility:

1. Run the following command as the root user:

sam

2. Select the Kernel Configuration area.

3. Select the Drivers area.

4. Select the asynchronous disk driver (asyncdsk).

5. Select Actions, and then select Add Driver to Kernel.

6. Select List, and then select Configurable Parameters.

7. Select the MAX_ASYNC_PORTS parameter.

8. Select Action, and then select Modify Configurable Parameter.

9. Specify a new value for the parameter, using the following guidelines, and then
click OK.

The MAX_ASYNC_PORTS parameter is a configurable HP-UX kernel parameter that
controls the maximum number of processes that can open the /dev/async file
simultaneously.

The system displays an error message when a process tries to open the /dev/
async file after the maximum number of processes have opened the file. This error
can reduce performance on systems with a large number of shadow processes or
many parallel query slaves performing asynchronous Input-Output. This error is
not recorded. To avoid this error, estimate the highest likely number of processes
that can access the /dev/async file and set the MAX_ASYNC_PORTS parameter to this
value.

10. Select Actions, and then select Process a New Kernel.

11. Select one of the following options, and then click OK:

• Move Kernel Into Place and Shutdown System/Reboot Now

• Do Not Move Kernel Into Place: Do Not Shutdown/Reboot Now

If you choose the second option, then the new kernel, vmunix_test, and the
system.SAM configuration file used to create it, are both created in the /stand/build
directory.

To enable asynchronous Input-Output operations using the HP-UX asynchronous
device driver:

Appendix D
Asynchronous Input-Output

D-5

1. Log in as the root user.

2. If /dev/async does not exist, use the following command to create it:

/sbin/mknod /dev/async c 101 0x0

By default, the minor number is set to 0. The following table describes the various
minor numbers for 8-bit that you can use to create a device file:

Minor number Description

0x0 This is the HP-UX default value for /dev/async.

0x4 Enable disc device timeouts to complete with an error code rather than
retrying forever. This setting is necessary for application-level disc
mirroring, so as to avoid the situation where the application waits
forever for a failed disc device to be repaired. Oracle RDBMS users
should enable this feature when Automatic Storage Management
mirroring/replication (internal redundancy) is used. SGA will be locked in
memory.

0x100 Enable on-demand locking of memory pages by async driver when
asyncdsk_open(2) is called. A low-overhead routine is then used to lock
a page into memory during I/O operations.

On-demand locking is critically important when using Oracle's Automatic
Memory Management feature (the use of MEMORY_TARGET in the
init.ora file to control memory usage). RDBMS deployments utilizing
dynamic nPar or dynamic vPar features should also configure on-
demand locking.

More traditional RDBMS deployments can consider on-demand locking
in light of its more obvious effects. Generally speaking, RDBMS startup
will be quicker because the complete SGA is not locked into memory
immediately. However, some instances will experience a slight run-time
performance penalty with on-demand locking as memory pages are
dynamically locked/unlocked for each I/O request.

0x104 This is a combination of 0x100 and 0x4. Both the features are enabled.

3. Enter the following command to verify that the /dev/async device file exists and
has the major number 101:

ls -l /dev/async

The output of this command should look similar to the following:

crw------- 1 oracle dba 101 0x000000 Oct 28 10:32 /dev/async

4. If required, give the device file the operating system owner and permissions
consistent with those of the Oracle software owner and OSDBA group.

If the Oracle software owner is oracle and the OSDBA group is dba, then run the
following commands:

/usr/bin/chown oracle:dba /dev/async
/usr/bin/chmod 660 /dev/async

D.4.3 Verifying Asynchronous Input-Output
To verify asynchronous Input-Output, first verify that the HP-UX asynchronous driver is
configured for Oracle Database, then verify that Oracle Database is executing
asynchronous Input-Output through the HP-UX device driver:

Appendix D
Asynchronous Input-Output

D-6

• Verifying That HP-UX Asynchronous Driver is Configured for Oracle Database

• Verifying that Oracle Database is Using Asynchronous Input-Output

D.4.3.1 Verifying That HP-UX Asynchronous Driver is Configured for Oracle
Database

To verify that the HP-UX asynchronous driver is configured properly for Oracle
Database:

1. Start Oracle Database with a few parallel query slave processes.

2. Start the GlancePlus/UX utility as follows:

$ gpm

3. In the main window, click Reports and then click Process List.

4. In the Process List window, select one parallel query slave process, select
Reports, and then select Process Open Files.

The list of files currently opened by the parallel query slave process is displayed.

5. In the list of open files, check for the /dev/async file or the 101 0x104000 mode.

If either is in the list, then the /dev/async file has been opened by the parallel query
slave process, and the HP-UX asynchronous device driver is configured properly
to enable Oracle processes to run asynchronous Input-Output. Make a note of the
file descriptor number for the /dev/async file.

D.4.3.2 Verifying that Oracle Database is Using Asynchronous Input-Output
To verify that Oracle Database is using asynchronous Input-Output through the HP-UX
asynchronous device driver:

1. Attach the HP-UX tusc utility to the same Oracle parallel query slave that you
selected in GlancePlus in the preceding procedure.

2. Run an Input-Output bound query in the environment.

3. Check the pattern of read and write calls in the tusc output.

You can do this, for example, by entering the following command, where pid is the
process ID of a parallel query slave supposed to process asynchronous Input-
Output:

$ tusc -p pid > tusc.output

4. After running the query, press Ctrl+c to disconnect from the process, and then
open the tusc.output file.

The following example shows a sample tusc.output file:

(Attached to process 2052: "ora_p000_tpch" [64-bit])
...................
........................
[2052] read(9, "80\0\001\013 \b\0\0\0\0\0\0\0\0".., 388) .. = 28
[2052] write(9, "\0\0\00e\0\0\0\080\0\001\013Ð \0".., 48) .. = 48
[2052] read(9, "80\0\001\013¢ 18\0\0\0\0\0\0\0\0".., 388) .. = 28
[2052] write(9, "\0\0\00e\0\0\0\080\0\001\01bd4\0".., 48) .. = 48

Appendix D
Asynchronous Input-Output

D-7

If the DISK_ASYNCH_IO initialization parameter is not explicitly set to false (set to true
by default), then the tusc.output file shows a pattern of asynchronous read/write
calls of the same file descriptor (9 in the preceding example) back to back.

Map the file descriptor number in the tusc.output file to that used by /dev/async file
in GlancePlus. They should match for the particular parallel query slave process.
This verifies that Input-Output through the HP-UX asynchronous driver is
asynchronous. With synchronous Input-Output, or if the DISK_ASYNCH_IO
initialization parameter is explicitly set to FALSE, you do not see the asynchronous
read/write pattern described previously. Instead, you see calls to lseek or pread/
pwrite. You also see many different file descriptors (the first argument to read/
write) instead of just a single file descriptor.

D.4.4 Asynchronous Flag in SGA
Oracle Database on HP-UX uses a nonblocking polling facility provided by the HP-UX
asynchronous driver to check the status of the Input-Output operations. This polling is
performed by checking a flag that is updated by the asynchronous driver based on the
status of the Input-Output operations submitted. HP-UX requires that this flag be in
shared memory.

Oracle Database configures an asynchronous flag in the SGA for each Oracle
process. Oracle Database on HP-UX has a true asynchronous Input-Output
mechanism where Input-Output requests can be issued even though some previously
issued Input-Output operations are not complete. This helps to enhance performance
and ensures good scalability of parallel Input-Output processes.

Releases of Oracle Database earlier than release 8.1.7 were able to run Input-Output
operations only from shared memory by using the HP-UX asynchronous driver. Oracle
Database 11g runs Input-Output operations from both shared memory and process-
private regions using the new HP-UX asynchronous driver. However, Input-Output
operations through the asynchronous driver are not asynchronous in nature. This is
because Oracle Database must perform a blocking wait to check the status of Input-
Output operations submitted to the asynchronous driver. This causes some Oracle
processes, such as the database writer process, to essentially process synchronous
Input-Output.

D.5 Large Memory Allocations and Oracle Database Tuning
Applications running on Oracle Database 11g and later can use significantly more
memory than applications running on earlier releases. This is because Oracle
Database 11g changes the default setting for virtual memory data pages from D (4 KB)
to L (4 GB) on HP-UX systems.

This section contains the following topics:

• Default Large Virtual Memory Page Size

• Tuning Recommendations

• Tunable Base Page Size

D.5.1 Default Large Virtual Memory Page Size
By default, Oracle Database uses the largest virtual memory page size setting
available on HP-UX for allocating process-private memory. It is defined by the value L

Appendix D
Large Memory Allocations and Oracle Database Tuning

D-8

(largest.) This value is set as one of the LARGE_PAGE_FLAGS options when linking an
Oracle executable.

When the virtual memory page size is set to L, HP-UX allocates the available process-
private memory to pages of 1 MB, 4 MB, 16 MB and so on, until it reaches the 1 GB
limit, or until it reaches the total amount of allocated memory. If you allocate enough
memory to the Oracle PGA for the operating system to be able to allocate memory in
larger data page size units, then the operating system allocates the maximum page
size at once. For example, if you allocate 48 MB for the Oracle PGA, then the system
can have either 3 pages each of 16 MB, or a series of pages in unit sizes with the
smaller multiples. For example, four 1 MB pages, three 4 MB pages, and two 16 MB
pages. If you allocate 64 MB to the PGA, then the operating system allocates one
page of 64 MB, as the data page unit size matches the available memory.

In general, large memory pages yield better application performance by reducing the
number of virtual memory translation faults that must be handled by the operating
system, freeing more CPU resources for the application. Large pages help to reduce
the total number of data pages required to allocate the process-private memory. This
reduction decreases the chances of translation lookaside buffer misses at the
processor level.

However, if applications are constrained in memory and tend to run a very large
number of processes, then this drastic page size increase may lead processes to
indicate large memory allocations, followed by an Out of memory error message. If this
happens, then you must lower the page size to a value between the D (default) size of
4 KB and the L (largest) size of 4 GB.

With the lowest page size setting (4 KB), CPU utilization can be 20 percent higher than
that with a larger page size setting. With the highest setting of L, the memory utilization
can be 50 percent higher than that with a 4 MB setting. In cases where the system
shows memory constraints, Oracle recommends that you set the page size to match
the requirements of the particular application, within the constraints of available
memory resources.

For example, an application that has problems with the L setting may show reasonable
performance with a 4 MB virtual memory page setting.

D.5.2 Tuning Recommendations
To address tuning for the increased memory allocation required for persistent private
SQL areas and large virtual memory page sizes, Oracle recommends that you
decrease the virtual memory data page size for Oracle Database as required. Use the
following command to alter the page size setting:

/usr/bin/chatr +pd newsize $ORACLE_HOME/bin/oracle

In the preceding example, newsize represents the new value of the virtual memory
page size.

Display the new setting using the chatr command as follows:

/usr/bin/chatr $ORACLE_HOME/bin/oracle

D.5.3 Tunable Base Page Size
A large base page size enables efficient memory management. The default value for
base_pagesize is 4 KB. The new feature introduced with HP-UX 11.31 enables to adjust

Appendix D
Large Memory Allocations and Oracle Database Tuning

D-9

the size of the base page, by invoking kctune (1 M) to change the tunable
base_pagesize and then restart the computer.

D.6 CPU_COUNT Initialization Parameter and HP-UX
Dynamic Processor Reconfiguration

HP-UX 11i supports dynamic run-time reconfiguration of processor sets and dynamic
reassignment of workload between processor sets by valid users.

HP-UX Virtual Partitions enable users to configure their systems in multiple logical
partitions where each partition is assigned its own set of processors, memory, and
Input-Output resources, and can run a separate instance of the HP-UX operating
system. HP-UX processor sets integrated with vPars support dynamic processor
migration from one virtual partition to another without requiring a restart of any virtual
partition. This helps to provide efficient resource partitioning between applications to
minimize interference and guarantees necessary resource allocation to each
application running on the HP-UX server.

See Also:

Refer to Oracle Database Concepts for more information about dynamic
resource provisioning

D.7 Network Information Service external naming support
Network Information Service external naming adapter is supported on HP-UX.

See Also:

Oracle Database Net Services Administrator's Guide to configure and use
Network Information Service external naming

D.8 Activating and Setting Expanded Host Names and Node
Names

The system node names and host names have default length limits of 8 and 64 bytes.
The system administrator can configure the system to expand both these limits to 255
bytes.

A dynamic kernel tunable parameter expanded_node_host_names, must be turned on to
allow larger names to be set.

To turn on the kernel parameter, run the following command:

kctune expanded_node_host_names=1

To turn off the kernel parameter, run the following command:

Appendix D
CPU_COUNT Initialization Parameter and HP-UX Dynamic Processor Reconfiguration

D-10

kctune expanded_node_host_names=0

Appendix D
Activating and Setting Expanded Host Names and Node Names

D-11

E
Using Oracle ODBC Driver

This appendix provides information related to using Oracle ODBC Driver.

It contains the following sections:

• Oracle ODBC Features Not Supported

• Implementation of Data Types

• Limitations on Data Types

• Format of the Connection String for the SQLDriverConnect Function

• Reducing Lock Timeout in a Program

• Linking ODBC Applications

• Obtaining Information About ROWIDs

• ROWIDs in a WHERE Clause

• Enabling Result Sets

• Enabling EXEC Syntax

• Supported Functionality

• Unicode Support

• Performance and Tuning

• Error Messages

See Also:

Oracle Database Installation Guide for your respective platform for the
ODBC driver certification information

E.1 Oracle ODBC Features Not Supported
Oracle ODBC Driver does not support the following Oracle ODBC 3.0 features:

• Interval data types

• SQL_C_UBIGINT and SQL_C_SBIGINT C data type identifiers

• Shared connections

• Shared environments

• The SQL_LOGIN_TIMEOUT attribute of SQLSetConnectAttr

• The expired password option

Oracle ODBC Driver does not support the SQL functions listed in the following table:

E-1

String Functions Numeric Functions Time, Date, and Interval Functions

BIT_LENGTH ACOS CURRENT_DATE

CHAR_LENGTH ASIN CURRENT_TIME

CHARACTER_LENGTH ATAN CURRENT_TIMESTAMP

DIFFERENCE ATAN2 EXTRACT

OCTET_LENGTH COT TIMESTAMPDIFF

POSITION DEGREES

RADIANS

RAND

ROUND

E.2 Implementation of Data Types
This section discusses the DATE, TIMESTAMP, and floating point data types.

DATE and TIMESTAMP

The semantics of Oracle DATE and TIMESTAMP data types do not correspond exactly with
the ODBC data types with the same names. The Oracle DATE data type contains both
date and time information. The SQL_DATE data type contains only date information. The
Oracle TIMESTAMP data type also contains date and time information, but it has greater
precision in fractional seconds. Oracle ODBC Driver reports the data types of both
Oracle DATE and TIMESTAMP columns as SQL_TIMESTAMP to prevent information loss.
Similarly, Oracle ODBC Driver binds SQL_TIMESTAMP parameters as Oracle TIMESTAMP
values.

See Also:

"DATE and TIMESTAMP Data Types" for information about DATE and
TIMESTAMP data types related to performance and tuning

Floating Point Data Types

When connected to an Oracle Database 12c Release 2 (12.2) or later, Oracle ODBC
Driver maps the Oracle floating point data types BINARY_FLOAT and BINARY_DOUBLE to the
ODBC data types SQL_REAL and SQL_DOUBLE, respectively. In earlier releases, SQL_REAL
and SQL_DOUBLE mapped to the generic Oracle numeric data type.

E.3 Limitations on Data Types
Oracle ODBC Driver and Oracle Database impose limitations on data types. The
following table describes these limitations:

Limited Data Type Description

Literals Oracle Database limits literals in SQL statements to 4000 bytes.

Appendix E
Implementation of Data Types

E-2

Limited Data Type Description

SQL_LONGVARCHAR and
SQL_WLONGVARCHAR

The Oracle limit for SQL_LONGVARCHAR data, where the column
type is LONG, is 2,147,483,647 bytes. The Oracle limit for
SQL_LONGVARCHAR data, where the column type is CLOB, is 4
gigabytes. The limiting factor is the client workstation memory.

SQL_LONGVARCHAR and
SQL_LONGVARBINARY

Oracle Database permits only a single long data column in each
table. The long data types are SQL_LONGVARCHAR (LONG) and
SQL_LONGVARBINARY (LONG RAW). Oracle recommends that you
use CLOB and BLOB columns instead. There is no restriction on
the number of CLOB and BLOB columns in a table.

E.4 Format of the Connection String for the
SQLDriverConnect Function

The SQLDriverConnect function is one of the functions implemented by Oracle ODBC
Driver. The following table describes the keywords that you can include in the
connection string argument of the SQLDriverConnect function call:

Keyword Meaning Value

DSN ODBC data source name User-supplied name

This is a mandatory keyword.

DBQ TNS service name User-supplied name

This is a mandatory keyword.

UID User ID or user name User-supplied name

This is a mandatory keyword.

PWD Password User-supplied name

Specify PWD=; for an empty
password.

This is a mandatory keyword.

DBA Database attribute W implies write access

R implies read-only access

APA Applications attributes T implies that thread safety is
to be enabled.

F implies that thread safety is
to be disabled.

RST Result sets T implies that result sets are to
be enabled.

F implies that result sets are to
be disabled.

QTO Query timeout option T implies that query timeout is
to be enabled.

F implies that query timeout is
to be disabled.

Appendix E
Format of the Connection String for the SQLDriverConnect Function

E-3

Keyword Meaning Value

CSR Close cursor T implies that close cursor is to
be enabled.

F implies that close cursor is to
be disabled.

BAM Batch autocommit mode IfAllSuccessful implies
commit only if all statements
are successful (old behavior).

UpToFirstFailure implies
commit up to first failing
statement. This is ODBC
version 7 behavior.

AllSuccessful implies commit
all successful statements.

FBS Fetch buffer size User-supplied numeric value
(specify a value in bytes of 0
or greater).The default is
60,000 bytes.

FEN Failover T implies failover is to be
enabled.

F implies failover is to be
disabled.

FRC Failover retry count User-supplied numeric value.

The default is 10.

FDL Failover delay User-supplied numeric value.

The default is 10.

LOB LOB writes T implies LOBs are to be
enabled.

F implies LOBs are to be
disabled.

FWC Force SQL_WCHAR support T implies Force SQL_WCHAR is
to be enabled.

F implies Force SQL_WCHAR is
to be disabled.

EXC EXEC syntax T implies EXEC syntax is to be
enabled.

F implies EXEC syntax is to be
disabled.

XSM Schema field Default implies that the
default value is to be used.

Database implies that the
database name is to be used.

Owner implies that the name of
the owner is to be used.

MDI Set metadata ID default T implies that the default value
of SQL_ATTR_METADATA_ID is
SQL_TRUE.

F implies that the default value
of SQL_ATTR_METADATA_ID is
SQL_FALSE.

Appendix E
Format of the Connection String for the SQLDriverConnect Function

E-4

Keyword Meaning Value

DPM Disable SQLDescribeParam T implies that
SQLDescribeParam is to be
disabled.

F implies that
SQLDescribeParam is to be
enabled.

BTD Bind TIMESTAMP as DATE T implies that SQL_TIMESTAMP
is to be bound as Oracle DATE.

F implies that SQL_TIMESTAMP
is to be bound as Oracle
TIMESTAMP.

NUM Numeric settings NLS implies that the
Globalization Support numeric
settings are to be used (to
determine the decimal and
group separator).

E.5 Reducing Lock Timeout in a Program
Oracle Database waits indefinitely for lock conflicts between transactions to be
resolved. However, you can limit the amount of time that Oracle Database waits for
locks to be resolved. To do this, set the SQL_ATTR_QUERY_TIMEOUT attribute of the ODBC
SQLSetStmtAttr function while calling this function before connecting to the data source.

E.6 Linking ODBC Applications
When you link the program, you must link it with the Driver Manager library,
libodbc.so.

E.7 Obtaining Information About ROWIDs
The ODBC SQLSpecialColumns function returns information about the columns in a
table. When used with Oracle ODBC Driver, it returns information about the Oracle
ROWIDs associated with an Oracle table.

E.8 ROWIDs in a WHERE Clause
ROWIDs may be used in the WHERE clause of an SQL statement. However, the ROWID
value must be presented in a parameter marker.

E.9 Enabling Result Sets
Oracle reference cursors, also known as result sets, enable an application to retrieve
data using stored procedures and stored functions. The following information
describes how to use reference cursors to enable result sets through ODBC:

• You must use the ODBC syntax for calling stored procedures. Native PL/SQL is
not supported through ODBC. The following code sample identifies how to call the

Appendix E
Reducing Lock Timeout in a Program

E-5

procedure or function without a package and within a package. The package name
in this case is RSET.

Procedure call:
{CALL Example1(?)}
{CALL RSET.Example1(?)}
Function Call:
{? = CALL Example1(?)}
{? = CALL RSET.Example1(?)}

• The PL/SQL reference cursor parameters are omitted when calling the procedure.
For example, assume procedure Example2 is defined to have four parameters.
Parameters 1 and 3 are reference cursor parameters and parameters 2 and 4 are
character strings. The call is specified as:

{CALL RSET.Example2("Literal 1", "Literal 2")}

The following sample application shows how to return a result set by using Oracle
ODBC Driver:

/*
* Sample Application using Oracle reference cursors through ODBC
*
* Assumptions:
*
* 1) Oracle Sample database is present with data loaded for the EMP table.
*
* 2) Two fields are referenced from the EMP table, ename and mgr.
*
* 3) A data source has been setup to access the sample database.
*
*
* Program Description:
*
* Abstract:
*
* This program demonstrates how to return result sets using
* Oracle stored procedures
*
* Details:
*
* This program:
* Creates an ODBC connection to the database.
* Creates a Packaged Procedure containing two result sets.
* Executes the procedure and retrieves the data from both result sets.
* Displays the data to the user.
* Deletes the package then logs the user out of the database.
*
*
* The following is the actual PL/SQL this code generates to
* create the stored procedures.
*
DROP PACKAGE ODBCRefCur;
CREATE PACKAGE ODBCRefCur AS
 TYPE ename_cur IS REF CURSOR;
 TYPE mgr_cur IS REF CURSOR;
PROCEDURE EmpCurs(Ename IN OUT ename_cur, Mgr IN OUT mgr_cur, pjob IN VARCHAR2);

END;

/
CREATE PACKAGE BODY ODBCRefCur AS

Appendix E
Enabling Result Sets

E-6

PROCEDURE EmpCurs(Ename IN OUT ename_cur, Mgr IN OUT mgr_cur, pjob IN VARCHAR2)
 AS
 BEGIN
 IF NOT Ename%ISOPEN
 THEN
 OPEN Ename for SELECT ename from emp;
 END IF;

 IF NOT Mgr%ISOPEN
 THEN
 OPEN Mgr for SELECT mgr from emp where job = pjob;
 END IF;
 END;
END;
/

*
* End PL/SQL for Reference Cursor.
*/

/*
 * Include Files
 */
#include <stdio.h>
#include <sql.h>
#include <sqlext.h>
/*
 * Defines
 */
#define JOB_LEN 9
#define DATA_LEN 100
#define SQL_STMT_LEN 500
/*
 * Procedures
 */
void DisplayError(SWORD HandleType, SQLHANDLE hHandle, char *Module);
/*
 * Main Program
 */
int main()
{
SQLHENV hEnv;
SQLHDBC hDbc;
SQLHSTMT hStmt;
SQLRETURN rc;
char *DefUserName ="jones";
char *DefPassWord ="password";
SQLCHAR ServerName[DATA_LEN];
SQLCHAR *pServerName=ServerName;
SQLCHAR UserName[DATA_LEN];
SQLCHAR *pUserName=UserName;
SQLCHAR PassWord[DATA_LEN];
SQLCHAR *pPassWord=PassWord;
char Data[DATA_LEN];
SQLINTEGER DataLen;
char error[DATA_LEN];
char *charptr;
SQLCHAR SqlStmt[SQL_STMT_LEN];
SQLCHAR *pSqlStmt=SqlStmt;
char *pSalesMan = "SALESMAN";

Appendix E
Enabling Result Sets

E-7

SQLINTEGER sqlnts=SQL_NTS;
/*
 * Allocate the Environment Handle
 */
rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &hEnv);
if (rc != SQL_SUCCESS)
{
 printf("Cannot Allocate Environment Handle\n");
 printf("\nHit Return to Exit\n");
 charptr = gets ((char *)error);
 exit(1);
}
/*
 * Set the ODBC Version
 */
rc = SQLSetEnvAttr(hEnv,SQL_ATTR_ODBC_VERSION,(void *)SQL_OV_ODBC3,0);
if (rc != SQL_SUCCESS)
{
 printf("Cannot Set ODBC Version\n");
 printf("\nHit Return to Exit\n");
 charptr = gets ((char *)error);
 exit(1);
}
/*
 * Allocate the Connection handle
 */
rc = SQLAllocHandle(SQL_HANDLE_DBC, hEnv, &hDbc);
if (rc != SQL_SUCCESS)
{
 printf("Cannot Allocate Connection Handle\n");
 printf("\nHit Return to Exit\n");
 charptr = gets ((char *)error);
 exit(1);
}
/*
 * Get User Information
 */
strcpy ((char *) pUserName, DefUserName);
strcpy ((char *) pPassWord, DefPassWord);
/*
 * Data Source name
 */
printf("\nEnter the ODBC Data Source Name\n");
charptr = gets ((char *) ServerName);
/*
 * User Name
 */
printf ("\nEnter User Name Default [%s]\n", pUserName);
charptr = gets ((char *) UserName);
if (*charptr == '\0')
{
 strcpy ((char *) pUserName, (char *) DefUserName);
}
/*
 * Password
 */
printf ("\nEnter Password Default [%s]\n", pPassWord);
charptr = gets ((char *)PassWord);
if (*charptr == '\0')
{
 strcpy ((char *) pPassWord, (char *) DefPassWord);

Appendix E
Enabling Result Sets

E-8

}
/*
 * Connection to the database
 */
rc = SQLConnect(hDbc,pServerName,(SQLSMALLINT) strlen((char
*)pServerName),pUserName,(SQLSMALLINT) strlen((char *)pUserName),pPassWord,
(SQLSMALLINT) strlen((char *)pPassWord));
if (rc != SQL_SUCCESS)
{
 DisplayError(SQL_HANDLE_DBC, hDbc, "SQLConnect");
}
/*
 * Allocate a Statement
 */
rc = SQLAllocHandle(SQL_HANDLE_STMT, hDbc, &hStmt);
if (rc != SQL_SUCCESS)
{
 printf("Cannot Allocate Statement Handle\n");
 printf("\nHit Return to Exit\n");
 charptr = gets ((char *)error);
 exit(1);
}
/*
 * Drop the Package
 */
strcpy((char *) pSqlStmt, "DROP PACKAGE ODBCRefCur");
rc = SQLExecDirect(hStmt, pSqlStmt, strlen((char *)pSqlStmt));
/*
 * Create the Package Header
 */
strcpy((char *) pSqlStmt, "CREATE PACKAGE ODBCRefCur AS\n");
strcat((char *) pSqlStmt, " TYPE ename_cur IS REF CURSOR;\n");
strcat((char *) pSqlStmt, " TYPE mgr_cur IS REF CURSOR;\n\n");
strcat((char *) pSqlStmt, " PROCEDURE EmpCurs (Ename IN OUT ename_cur,");
strcat((char *) pSqlStmt, "Mgr IN OUT mgr_cur,pjob IN VARCHAR2);\n\n");
strcat((char *) pSqlStmt, "END;\n");
rc = SQLExecDirect(hStmt, pSqlStmt, strlen((char *)pSqlStmt));
if (rc != SQL_SUCCESS)
{
 DisplayError(SQL_HANDLE_STMT, hStmt, "SQLExecDirect");
}
/*
 * Create the Package Body
 */
strcpy((char *) pSqlStmt, "CREATE PACKAGE BODY ODBCRefCur AS\n");
strcat((char *) pSqlStmt, " PROCEDURE EmpCurs (Ename IN OUT ename_cur,");
strcat((char *) pSqlStmt, "Mgr IN OUT mgr_cur, pjob IN VARCHAR2)\n AS\n BEGIN\n");
strcat((char *) pSqlStmt, " IF NOT Ename%ISOPEN\n THEN\n");
strcat((char *) pSqlStmt, " OPEN Ename for SELECT ename from emp;\n");
strcat((char *) pSqlStmt, " END IF;\n\n");
strcat((char *) pSqlStmt, " IF NOT Mgr%ISOPEN\n THEN\n");
strcat((char *) pSqlStmt, " OPEN Mgr for SELECT mgr from emp where job = pjob;\n");
strcat((char *) pSqlStmt, " END IF;\n");
strcat((char *) pSqlStmt, " END;\n");
strcat((char *) pSqlStmt, "END;\n");
rc = SQLExecDirect(hStmt, pSqlStmt, strlen((char *)pSqlStmt));
if (rc != SQL_SUCCESS)
{
 DisplayError(SQL_HANDLE_STMT, hStmt, "SQLExecDirect");
}
/*

Appendix E
Enabling Result Sets

E-9

 * Bind the Parameter
 */
rc = SQLBindParameter(hStmt,1,SQL_PARAM_INPUT,SQL_C_CHAR,SQL_CHAR,JOB_LEN,
0,pSalesMan,0,&sqlnts);
/*
 * Call the Store Procedure which executes the Result Sets
 */
strcpy((char *) pSqlStmt, "{CALL ODBCRefCur.EmpCurs(?)}");
rc = SQLExecDirect(hStmt, pSqlStmt, strlen((char *)pSqlStmt));
if (rc != SQL_SUCCESS)
{
 DisplayError(SQL_HANDLE_STMT, hStmt, "SQLExecDirect");
}
/*
 * Bind the Data
 */
rc = SQLBindCol(hStmt,1,SQL_C_CHAR,Data,sizeof(Data),&DataLen);
if (rc != SQL_SUCCESS)
{
 DisplayError(SQL_HANDLE_STMT, hStmt, "SQLBindCol");
}
/*
 * Get the data for Result Set 1
 */
printf("\nEmployee Names\n\n");
while (rc == SQL_SUCCESS)
{
 rc = SQLFetch(hStmt);
 if (rc == SQL_SUCCESS)
 {
 printf("%s\n", Data);
 }
 else
 {
 if (rc != SQL_NO_DATA)
 {
 DisplayError(SQL_HANDLE_STMT, hStmt, "SQLFetch");
 }
 }
}
printf("\nFirst Result Set - Hit Return to Continue\n");
charptr = gets ((char *)error);
/*
 * Get the Next Result Set
 */
rc = SQLMoreResults(hStmt);
if (rc != SQL_SUCCESS)
{
 DisplayError(SQL_HANDLE_STMT, hStmt, "SQLMoreResults");
}
/*
 * Get the data for Result Set 2
 */
printf("\nManagers\n\n");
while (rc == SQL_SUCCESS)
{
 rc = SQLFetch(hStmt);
 if (rc == SQL_SUCCESS)
 {
 printf("%s\n", Data);
 }

Appendix E
Enabling Result Sets

E-10

 else
 {
 if (rc != SQL_NO_DATA)
 {
 DisplayError(SQL_HANDLE_STMT, hStmt, "SQLFetch");
 }
 }
}
printf("\nSecond Result Set - Hit Return to Continue\n");
charptr = gets ((char *)error);
/*
 * Should Be No More Results Sets
 */
rc = SQLMoreResults(hStmt);
if (rc != SQL_NO_DATA)
{
 DisplayError(SQL_HANDLE_STMT, hStmt, "SQLMoreResults");
}
/*
 * Drop the Package
 */
strcpy((char *) pSqlStmt, "DROP PACKAGE ODBCRefCur");
rc = SQLExecDirect(hStmt, pSqlStmt, strlen((char *)pSqlStmt));
/*
 * Free handles close connections to the database
 */
SQLFreeHandle(SQL_HANDLE_STMT, hStmt);
SQLDisconnect(hDbc);
SQLFreeHandle(SQL_HANDLE_DBC, hDbc);
SQLFreeHandle(SQL_HANDLE_ENV, hEnv);
printf("\nAll Done - Hit Return to Exit\n");
charptr = gets ((char *)error);
return(0);
}
/*
 * Display Error Messages
 */
void DisplayError(SWORD HandleType, SQLHANDLE hHandle, char *Module)
{
SQLCHAR MessageText[255];
SQLCHAR SQLState[80];
SQLRETURN rc=SQL_SUCCESS;
long NativeError;
SWORD RetLen;
SQLCHAR error[25];
char *charptr;
rc =
SQLGetDiagRec(HandleType,hHandle,1,SQLState,&NativeError,MessageText,255,&RetLen);
printf("Failure Calling %s\n", Module);
if (rc == SQL_SUCCESS || rc == SQL_SUCCESS_WITH_INFO)
{
 printf("\t\t\t State: %s\n", SQLState);
 printf("\t\t\t Native Error: %d\n", NativeError);
 printf("\t\t\t Error Message: %s\n", MessageText);
}
printf("\nHit Return to Exit\n");
charptr = gets ((char *)error);
exit(1);
}

Appendix E
Enabling Result Sets

E-11

E.10 Enabling EXEC Syntax
If the syntax of the SQL Server EXEC statement can be readily translated to an
equivalent Oracle procedure call without requiring any change to it, then Oracle ODBC
Driver can translate it if you enable this option.

The complete name of a SQL Server procedure consists of up to four identifiers:

• Server name

• Database name

• Owner name

• Procedure name

The format for the name is:

[[[server.][database].][owner_name].]procedure_name

During the migration of Microsoft SQL Server database to Oracle Database, the
definition of each SQL Server procedure or function is converted to its equivalent
Oracle Database syntax and is defined in a schema in Oracle Database. Migrated
procedures are often reorganized (and created in schemas) in one of the following
ways:

• All procedures are migrated to one schema (the default option).

• All procedures defined in one SQL Server database are migrated to the schema
named with that database name.

• All procedures owned by one user are migrated to the schema named with that
user's name.

To support these three ways of organizing migrated procedures, you can specify one
of these schema name options for translating procedure names. Object names in the
translated Oracle procedure call are not case-sensitive.

E.11 Supported Functionality
This section provides information about the functionality supported by Oracle ODBC
Driver. It contains the following sections:

• API Conformance

• Implementation of ODBC API Functions

• Implementation of the ODBC SQL Syntax

• Implementation of Data Types

E.11.1 API Conformance
Oracle ODBC Driver release 10.2.0.1.0 and higher supports all Core, Level 2, and
Level 1 functions.

Appendix E
Enabling EXEC Syntax

E-12

E.11.2 Implementation of ODBC API Functions
The following table describes how Oracle ODBC Driver implements specific functions:

Function Description

SQLConnect SQLConnect requires only a DBQ, user ID, and password.

SQLDriverConnect SQLDriverConnect uses the DSN, DBQ, UID, and PWD keywords.

SQLSpecialColumns If SQLSpecialColumns is called with the SQL_BEST_ROWID attribute,
then it always returns the ROWID column.

SQLProcedures and
SQLProcedureColumns

Refer to the information in the following row.

All catalog functions If the SQL_ATTR_METADATA_ID statement attribute is set to
SQL_TRUE, then a string argument is treated as an identifier
argument, and its case is not significant. In this case, the
underscore (_) and the percent sign (%) are treated as the actual
character, and not as a search pattern character. In contrast, if
this attribute is set to SQL_FALSE, then it is either an ordinary
argument or a pattern value argument and is treated literally, and
its case is significant.

SQLProcedures and SQLProcedureColumns

The SQLProcedures and SQLProcedureColumns calls have been modified to locate and
return information about all procedures and functions even if they are contained within
a package. In earlier releases, the calls only found procedures and functions that were
outside of packages. The following examples and scenarios show what procedures or
functions are returned if the SQL_ATTR_METADATA_ID attribute is set to SQL_FALSE.

Suppose that you have the following stored procedures:

"BAR"
"BARX"
"XBAR"
"XBARX"
"SQLPROCTEST.BAR"
"SQLPROCTEST.BARX"
"SQLPROCTEST.XBAR"
"SQLPROCTEST.XBARX"

When you look for % or %%%%%%, you get all eight procedures.

When you look for %_ or _%, you get the following:

BAR
BARX
XBAR
XBARX

When you look for . or .% or %.% or SQLPROC%. or SQLPROC%.%, you get the following:

SQLPROCTEST.BAR
SQLPROCTEST.BARX
SQLPROCTEST.XBAR
SQLPROCTEST.XBARX

When you look for %BAR, you get the following:

Appendix E
Supported Functionality

E-13

BAR
XBAR

When you look for .%BAR or %.%BAR, you get the following:

SQLPROCTEST.BAR
SQLPROCTEST.XBAR

When you look for SQLPROC% or .SQLPROC%, you get the following:

nothing (0 rows)

E.11.3 Implementation of the ODBC SQL Syntax
If a comparison predicate has a parameter marker as the second expression in the
comparison and the value of that parameter is set to SQL_NULL_DATA with
SQLBindParameter, then the comparison fails. This is consistent with the null predicate
syntax in ODBC SQL.

E.11.4 Implementation of Data Types
For programmers, the most important part of the implementation of the data types
concerns the CHAR, VARCHAR, and VARCHAR2 data types.

For an fSqlType value of SQL_VARCHAR, SQLGetTypeInfo returns the Oracle Database data
type VARCHAR2. For an fSqlType value of SQL_CHAR, SQLGetTypeInfo returns the Oracle
Database data type CHAR.

E.12 Unicode Support
This section provides information about Unicode support. It contains the following
topics:

• Unicode Support Within the ODBC Environment

• Unicode Support in ODBC API

• SQLGetData Performance

• Unicode Samples

E.12.1 Unicode Support Within the ODBC Environment
ODBC Driver Manager makes all ODBC drivers, regardless of whether they support
Unicode, appear as if they are Unicode compliant. This allows ODBC applications to
be written independent of the Unicode capabilities of underlying ODBC drivers.

The extent to which the Driver Manager can emulate Unicode support for ANSI ODBC
drivers is limited by the conversions possible between the Unicode data and the local
code page. Data loss is possible when the Driver Manager is converting from Unicode
to the local code page. Full Unicode support is not possible unless the underlying
ODBC driver supports Unicode. Oracle ODBC Driver provides full Unicode support.

Appendix E
Unicode Support

E-14

E.12.2 Unicode Support in ODBC API
The ODBC API supports both Unicode and ANSI entry points using the W and A suffix
convention. An ODBC application developer does not explicitly call entry points with
the suffix. An ODBC application that is compiled with the UNICODE and _UNICODE
preprocessor definitions generates the appropriate calls. For example, a call to
SQLPrepare compiles as SQLPrepareW.

The C data type, SQL_C_WCHAR, was added to the ODBC interface to allow applications
to specify that an input parameter is encoded as Unicode or to request column data
returned as Unicode. The macro SQL_C_TCHAR is useful for applications that must be
built as both Unicode and ANSI. The SQL_C_TCHAR macro compiles as SQL_C_WCHAR for
Unicode applications and as SQL_C_CHAR for ANSI applications.

The SQL data types, SQL_WCHAR, SQL_WVARCHAR, and SQL_WLONGVARCHAR, have been added
to the ODBC interface to represent columns defined in a table as Unicode. Potentially,
these values are returned from calls to SQLDescribeCol, SQLColAttribute, SQLColumns,
and SQLProcedureColumns.

Unicode encoding is supported for SQL column types NCHAR, NVARCHAR2, and
NCLOB. In addition, Unicode encoding is also supported for SQL column types CHAR
and VARCHAR2 if the character semantics are specified in the column definition.

Oracle ODBC Driver supports these SQL column types and maps them to ODBC SQL
data types. The following table lists the supported SQL data types and the equivalent
ODBC SQL data type:

SQL Data Types ODBC SQL Data Types

CHAR SQL_CHAR or SQL_WCHAR

VARCHAR2 SQL_VARCHAR or SQL_WVARCHAR

NCHAR SQL_WCHAR

NVARCHAR2 SQL_WVARCHAR

NCLOB SQL_WLONGVARCHAR

E.12.3 SQLGetData Performance
The SQLGetData function allows an ODBC application to specify the data type to receive
a column after the data has been fetched. OCI requires Oracle ODBC Driver to specify
the data type before it is fetched. In this case, Oracle ODBC Driver uses information
about the data type of the column (as defined in the database) to determine how to
best default to fetching the column through OCI.

If a column that contains character data is not bound by SQLBindCol, then Oracle ODBC
Driver must determine if it should fetch the column as Unicode or as the local code
page. The driver could always default to receiving the column as Unicode. However,
this may result in as many as two unnecessary conversions. For example, if the data
were encoded in the database as ANSI, then there would be an ANSI to Unicode
conversion to fetch the data into Oracle ODBC Driver. If the ODBC application then
requested the data as SQL_C_CHAR, then there would be an additional conversion to
revert the data to its original encoding.

Appendix E
Unicode Support

E-15

The default encoding of Oracle Database Client is used when fetching data. However,
an ODBC application may overwrite this default and fetch the data as Unicode by
binding the column or the parameter as the WCHAR data type.

E.12.4 Unicode Samples
Because Oracle ODBC Driver itself was implemented using TCHAR macros, it is
recommended that ODBC application programs use TCHAR to take advantage of the
driver.

The following examples show how to use TCHAR, which becomes the WCHAR data type if
you compile with UNICODE and _UNICODE:

Example E-1 Connection to Database

To use this code, you only must specify the Unicode literals for SQLConnect.

HENV envHnd;
HDBC conHnd;
HSTMT stmtHnd;
RETCODE rc;

rc = SQL_SUCCESS;

// ENV is allocated
rc = SQLAllocEnv(&envHnd);
// Connection Handle is allocated
rc = SQLAllocConnect(envHnd, &conHnd);
rc = SQLConnect(conHnd, _T("stpc19"), SQL_NTS, _T("jones"), SQL_NTS, _T("password"),
SQL_NTS);
.
.
.
if (conHnd)
 SQLFreeConnect(conHnd);
if (envHnd)
 SQLFreeEnv(envHnd);

Example E-2 Simple Retrieval

The following example retrieves the employee names and the job tiles from the EMP
table. With the exception that you must specify TCHAR compliant data to every ODBC
function, there is no difference to the ANSI case. If the case is a Unicode application,
then you must specify the length of the buffer to the BYTE length when you call
SQLBindCol. For example, sizeof(ename).

/*
** Execute SQL, bind columns, and Fetch.
** Procedure:
**
** SQLExecDirect
** SQLBindCol
** SQLFetch
**
*/
static SQLTCHAR *sqlStmt = _T("SELECT ename, job FROM emp");
SQLTCHAR ename[50];
SQLTCHAR job[50];
SQLINTEGER enamelen, joblen;

Appendix E
Unicode Support

E-16

_tprintf(_T("Retrieve ENAME and JOB using SQLBindCol 1.../n[%s]/n"), sqlStmt);

// Step 1: Prepare and Execute
rc = SQLExecDirect(stmtHnd, sqlStmt, SQL_NTS); // select
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

// Step 2: Bind Columns
rc = SQLBindCol(stmtHnd,
 1,
 SQL_C_TCHAR,
 ename,
 sizeof(ename),
 &enamelen);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

rc = SQLBindCol(stmtHnd,
 2,
 SQL_C_TCHAR,
 job,
 sizeof(job),
 &joblen);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

do
{
 // Step 3: Fetch Data
 rc = SQLFetch(stmtHnd);
 if (rc == SQL_NO_DATA)
 break;
 checkSQLErr(envHnd, conHnd, stmtHnd, rc);
 _tprintf(_T("ENAME = %s, JOB = %s/n"), ename, job);
} while (1);
_tprintf(_T("Finished Retrieval/n/n"));

Example E-3 Retrieval Using SQLGetData (Binding After Fetch)

This example shows how to use SQLGetData. There is no difference to the ANSI
application in terms of Unicode-specific issues.

/*
** Execute SQL, bind columns, and Fetch.
** Procedure:
**
** SQLExecDirect
** SQLFetch
** SQLGetData
*/
static SQLTCHAR *sqlStmt = _T("SELECT ename,job FROM emp"); // same as Case 1.
SQLTCHAR ename[50];
SQLTCHAR job[50];

_tprintf(_T("Retrieve ENAME and JOB using SQLGetData.../n[%s]/n"), sqlStmt);
if (rc != SQL_SUCCESS)
{
 _tprintf(_T("Failed to allocate STMT/n"));
 goto exit2;
}

// Step 1: Prepare and Execute
rc = SQLExecDirect(stmtHnd, sqlStmt, SQL_NTS); // select
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

Appendix E
Unicode Support

E-17

do
{

 // Step 2: Fetch
 rc = SQLFetch(stmtHnd);
 if (rc == SQL_NO_DATA)
 break;
 checkSQLErr(envHnd, conHnd, stmtHnd, rc);

 // Step 3: GetData
 rc = SQLGetData(stmtHnd,
 1,
 SQL_C_TCHAR,
 (SQLPOINTER)ename,
 sizeof(ename),
 NULL);
 checkSQLErr(envHnd, conHnd, stmtHnd, rc);
 rc = SQLGetData(stmtHnd,
 2,
 SQL_C_TCHAR,
 (SQLPOINTER)job,
 sizeof(job),
 NULL);
 checkSQLErr(envHnd, conHnd, stmtHnd, rc);
 _tprintf(_T("ENAME = %s, JOB = %s/n"), ename, job);
} while (1);
_tprintf(_T("Finished Retrieval/n/n"));

Example E-4 Simple Update

This example shows how to update data. The length of data for SQLBindParameter has
to be specified with the BYTE length, even in Unicode application.

/*
** Execute SQL, bind columns, and Fetch.
** Procedure:
**
** SQLPrepare
** SQLBindParameter
** SQLExecute
*/
static SQLTCHAR *sqlStmt = _T("INSERT INTO emp(empno,ename,job) VALUES(?,?,?)");
static SQLTCHAR *empno = _T("9876"); // Emp No
static SQLTCHAR *ename = _T("ORACLE"); // Name
static SQLTCHAR *job = _T("PRESIDENT"); // Job

_tprintf(_T("Insert User ORACLE using SQLBindParameter.../n[%s]/n"), sqlStmt);

// Step 1: Prepare
rc = SQLPrepare(stmtHnd, sqlStmt, SQL_NTS); // select
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

// Step 2: Bind Parameter
rc = SQLBindParameter(stmtHnd,
 1,
 SQL_PARAM_INPUT,
 SQL_C_TCHAR,
 SQL_DECIMAL,
 4, // 4 digit
 0,

Appendix E
Unicode Support

E-18

 (SQLPOINTER)empno,
 0,
 NULL);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

rc = SQLBindParameter(stmtHnd,
 2,
 SQL_PARAM_INPUT,
 SQL_C_TCHAR,
 SQL_CHAR,
 lstrlen(ename)*sizeof(TCHAR),
 0,
 (SQLPOINTER)ename,
 lstrlen(ename)*sizeof(TCHAR),
 NULL);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

rc = SQLBindParameter(stmtHnd,
 3,
 SQL_PARAM_INPUT,
 SQL_C_TCHAR,
 SQL_CHAR,
 lstrlen(job)*sizeof(TCHAR),
 0,
 (SQLPOINTER)job,
 lstrlen(job)*sizeof(TCHAR),
 NULL);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

// Step 3: Execute
rc = SQLExecute(stmtHnd);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

Example E-5 Update and Retrieval for Long Data (CLOB)

This example may be the most complicated case to update and retrieve data for long
data, like CLOB, in Oracle Database. Because the length of data should always be the
BYTE length, the expression lstrlen(TCHAR data)*sizeof(TCHAR) is needed to derive the
BYTE length.

/*
** Execute SQL, bind columns, and Fetch.
** Procedure:
**
** SQLPrepare
** SQLBindParameter
** SQLExecute
** SQLParamData
** SQLPutData
**
** SQLExecDirect
** SQLFetch
** SQLGetData
*/
static SQLTCHAR *sqlStmt1 = _T("INSERT INTO clobtbl(clob1) VALUES(?)");
static SQLTCHAR *sqlStmt2 = _T("SELECT clob1 FROM clobtbl");
SQLTCHAR clobdata[1001];
SQLTCHAR resultdata[1001];
SQLINTEGER ind = SQL_DATA_AT_EXEC;
SQLTCHAR *bufp;
int clobdatalen, chunksize, dtsize, retchklen;

Appendix E
Unicode Support

E-19

_tprintf(_T("Insert CLOB1 using SQLPutData.../n[%s]/n"), sqlStmt1);

// Set CLOB Data
{
 int i;
 SQLTCHAR ch;
 for (i=0, ch=_T('A'); i< sizeof(clobdata)/sizeof(SQLTCHAR); ++i, ++ch)
 {
 if (ch > _T('Z'))
 ch = _T('A');
 clobdata[i] = ch;
 }
 clobdata[sizeof(clobdata)/sizeof(SQLTCHAR)-1] = _T('/0');
}
clobdatalen = lstrlen(clobdata); // length of characters
chunksize = clobdatalen / 7; // 7 times to put

// Step 1: Prepare
rc = SQLPrepare(stmtHnd, sqlStmt1, SQL_NTS);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);
// Step 2: Bind Parameter with SQL_DATA_AT_EXEC
rc = SQLBindParameter(stmtHnd,
 1,
 SQL_PARAM_INPUT,
 SQL_C_TCHAR,
 SQL_LONGVARCHAR,
 clobdatalen*sizeof(TCHAR),
 0,
 (SQLPOINTER)clobdata,
 clobdatalen*sizeof(TCHAR),
 &ind);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);
// Step 3: Execute
rc = SQLExecute(stmtHnd);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

// Step 4: ParamData (initiation)
rc = SQLParamData(stmtHnd, (SQLPOINTER*)&bufp); // set value
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

for (dtsize=0, bufp = clobdata;
 dtsize < clobdatalen;
 dtsize += chunksize, bufp += chunksize)
{
 int len;
 if (dtsize+chunksize<clobdatalen)
 len = chunksize;
 else
 len = clobdatalen-dtsize;

 // Step 5: PutData
 rc = SQLPutData(stmtHnd, (SQLPOINTER)bufp, len*sizeof(TCHAR));
 checkSQLErr(envHnd, conHnd, stmtHnd, rc);
}

// Step 6: ParamData (temination)
rc = SQLParamData(stmtHnd, (SQLPOINTER*)&bufp);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

rc = SQLFreeStmt(stmtHnd, SQL_CLOSE);

Appendix E
Unicode Support

E-20

_tprintf(_T("Finished Update/n/n"));
rc = SQLAllocStmt(conHnd, &stmtHnd);
if (rc != SQL_SUCCESS)
{
 _tprintf(_T("Failed to allocate STMT/n"));
 goto exit2;
}

// Clear Result Data
memset(resultdata, 0, sizeof(resultdata));
chunksize = clobdatalen / 15; // 15 times to put

// Step 1: Prepare
rc = SQLExecDirect(stmtHnd, sqlStmt2, SQL_NTS); // select
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

// Step 2: Fetch
rc = SQLFetch(stmtHnd);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);
for(dtsize=0, bufp = resultdata;
 dtsize < sizeof(resultdata)/sizeof(TCHAR) && rc != SQL_NO_DATA;
 dtsize += chunksize-1, bufp += chunksize-1)
{
 int len; // len should contain the space for NULL termination
 if (dtsize+chunksize<sizeof(resultdata)/sizeof(TCHAR))
 len = chunksize;
 else
 len = sizeof(resultdata)/sizeof(TCHAR)-dtsize;

 // Step 3: GetData
 rc = SQLGetData(stmtHnd,
 1,
 SQL_C_TCHAR,
 (SQLPOINTER)bufp,
 len*sizeof(TCHAR),
 &retchklen);
}
if (!_tcscmp(resultdata, clobdata))
{
 _tprintf(_T("Succeeded!!/n/n"));
}
else
{
 _tprintf(_T("Failed!!/n/n"));
}

E.13 Performance and Tuning
This section contains the following topics:

• General ODBC Programming Guidelines

• Data Source Configuration Options

• DATE and TIMESTAMP Data Types

E.13.1 General ODBC Programming Guidelines
Apply the following programming guidelines to improve the performance of an ODBC
application:

Appendix E
Performance and Tuning

E-21

• Enable connection pooling if the application frequently connects and disconnects
from a data source. Reusing pooled connections is extremely efficient compared
to reestablishing a connection.

• Minimize the number of times a statement must be prepared. Where possible, use
bind parameters to make a statement reusable for different parameter values.
Preparing a statement once and running it several times is much more efficient
than preparing the statement for every SQLExecute.

• Do not include columns in a SELECT statement of which you know the application
does not retrieve; especially LONG columns. Because of the nature of the database
server protocols, Oracle ODBC Driver must fetch the entire contents of a LONG
column if it is included in the SELECT statement, regardless of whether the
application binds the column or performs a SQLGetData operation.

• If you are performing transactions that do not update the data source, then set the
SQL_ATTR_ACCESS_MODE attribute of the ODBC SQLSetConnectAttr function to
SQL_MODE_READ_ONLY.

• If you are not using ODBC escape clauses, then set the SQL_ATTR_NOSCAN attribute
of the ODBC SQLSetConnectAttr function or the ODBC SQLSetStmtAttr function to
true.

• Use the ODBC SQLFetchScroll function instead of the ODBC SQLFetch function for
retrieving data from tables that have a large number of rows.

E.13.2 Data Source Configuration Options
This section discusses the performance implications of the following ODBC data
source configuration options:

• Enable Result Sets

This option enables the support of returning result sets (for example, RefCursor)
from procedure calls. The default is enabling the returning of result sets.

Oracle ODBC Driver must query the database server to determine the set of
parameters for a procedure and their data types in order to determine if there are
any RefCursor parameters. This query incurs an additional network round trip the
first time any procedure is prepared and executed.

• Enable LOBs

This option enables the support of inserting and updating LOBs. The default is
enabled.

Oracle ODBC Driver must query the database server to determine the data types
of each parameter in an INSERT or UPDATE statement to determine if there are any
LOB parameters. This query incurs an additional network round trip the first time
any INSERT or UPDATE is prepared and run.

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for
more information about LOBs

Appendix E
Performance and Tuning

E-22

Note:

LOB data compression enables you to compress SecureFiles to gain
disk, Input-Output, and redo logging savings. This reduces costs as
compression utilizes space most efficiently and improves the
performance of SecureFiles as compression reduces Input-Output and
redo logging.

LOB data encryption provides enhanced database security. While the
encrypted data is available for random reads and writes, the data is more
secure.

Data compression and encryption consumes some additional memory.

• Bind TIMESTAMP as DATE

Binds SQL_TIMESTAMP parameters as the appropriate Oracle Database data type. If
this option is set to TRUE, then SQL_TIMESTAMP binds as the Oracle DATE data type. If
this option is set to FALSE, then SQL_TIMESTAMP binds as the Oracle TIMESTAMP data
type, which is the default.

• Enable Closing Cursors

The SQL_CLOSE option of the ODBC function, SQLFreeStmt, is supposed to close
associated cursors with a statement and discard all pending results. The
application can reopen the cursor by running the statement again without doing a
SQLPrepare again. A typical scenario for this would be an application that expects
to be idle for a while but reuses the same SQL statement again. While the
application is idle, it may want to free up any associated server resources.

The OCI, on which Oracle ODBC Driver is layered, does not support the
functionality of closing cursors. Therefore, by default, the SQL_CLOSE option has no
effect in Oracle ODBC Driver. The cursor and associated resources remain open
on the database.

Enabling this option causes the associated cursor to be closed on the database
server. However, this results in the parse context of the SQL statement being lost.
The ODBC application can run the statement again without calling SQLPrepare.
However, internally, Oracle ODBC Driver must prepare and run the statement all
over. Enabling this option has a severe performance impact on applications that
prepare a statement once and run it repeatedly.

This option should only be enabled if freeing the resources on the server is
necessary.

• Fetch Buffer Size

Set the Fetch Buffer Size (FetchBufferSize) in the odbc.ini file to a value specified
in bytes. This value is the amount of memory needed that determines how many
rows of data Oracle ODBC Driver pre-fetches at a time from an Oracle Database
to the client's cache regardless of the number of rows the application program
requests in a single query, thus improving performance.

There is an improvement in the response time of applications that typically fetch
fewer than 20 rows of data at a time, particularly over slow network connections or
from heavily loaded servers. Setting this too high can have an adverse effect on
response time or consume large amounts of memory. The default is 64,000 bytes.
You should choose an optimal value for the application.

Appendix E
Performance and Tuning

E-23

When the LONG and LOB data types are present, the number of rows pre-fetched by
Oracle ODBC Driver is not determined by the Fetch Buffer Size. The inclusion of
the LONG and LOB data types minimizes the performance improvement and could
result in excessive memory use. Oracle ODBC Driver ignores the Fetch Buffer
Size and only pre-fetches a set number of rows in the presence of the LONG and LOB
data types.

See Also:

"Format of the Connection String for the SQLDriverConnect Function"

E.13.3 DATE and TIMESTAMP Data Types
If a DATE column in the database is used in a WHERE clause and the column has an
index, then there can be an impact on the performance. For example:

SELECT * FROM EMP WHERE HIREDATE = ?

In this example, an index on the HIREDATE column could be used to make the query run
quickly. However, because HIREDATE is a DATE value and Oracle ODBC Driver is
supplying the parameter value as TIMESTAMP, the query optimizer of Oracle Database
must apply a conversion function. To prevent incorrect results (as might happen if the
parameter value had nonzero fractional seconds), the optimizer applies the conversion
to the HIREDATE column resulting in the following statement:

SELECT * FROM EMP WHERE TO_TIMESTAMP(HIREDATE) = ?

However, this has the effect of disabling the use of the index on the HIREDATE column.
Instead, the server performs a sequential scan of the table. If the table has many rows,
then this can take a long time. As a workaround for this situation, Oracle ODBC Driver
has the connection option to bind TIMESTAMP as DATE. When this option is enabled,
Oracle ODBC Driver binds SQL_TIMESTAMP parameters as the Oracle DATE data type
instead of the Oracle TIMESTAMP data type. This enables the query optimizer to use any
index on the DATE columns.

Note:

This option is intended only for use with Microsoft Access or other similar
programs that bind DATE columns as TIMESTAMP columns. It should not be used
when there are actual TIMESTAMP columns present or when data loss may
occur. Microsoft Access runs such queries using whatever columns are
selected as the primary key.

E.14 Error Messages
When an error occurs, Oracle ODBC Driver returns the native error number, the
SQLSTATE (an ODBC error code), and an error message. The driver derives this
information both from errors detected by the driver and errors returned by Oracle
Database.

Appendix E
Error Messages

E-24

Native Error

For errors that occur in the data source, Oracle ODBC Driver returns the native error
returned to it by Oracle Database. When Oracle ODBC Driver or the Driver Manager
detects an error, Oracle ODBC Driver returns a native error of zero.

SQLSTATE

For errors that occur in the data source, Oracle ODBC Driver maps the returned native
error to the appropriate SQLSTATE. When Oracle ODBC Driver or the Driver Manager
detects an error, it generates the appropriate SQLSTATE.

Error Message

For errors that occur in the data source, Oracle ODBC Driver returns an error
message based on the message returned by Oracle Database. For errors that occur in
Oracle ODBC Driver or the Driver Manager, Oracle ODBC Driver returns an error
message based on the text associated with the SQLSTATE.

Error messages have the following format:

[vendor] [ODBC-component] [data-source] error-message

The prefixes in brackets ([]) identify the source of the error. The following table shows
the values of these prefixes returned by Oracle ODBC Driver. When the error occurs in
the data source, the vendor and ODBC-component prefixes identify the vendor and name
of the ODBC component that received the error from the data source.

Error Source Prefix Value

Driver Manager [vendor]

[ODBC-component]

[data-source]

[unixODBC]

[Driver Manager]

Not applicable

Oracle ODBC Driver [vendor]

[ODBC-component]

[data-source]

[ORACLE]

[Oracle ODBC Driver]

Not applicable

Oracle Database [vendor]

[ODBC-component]

[data-source]

[ORACLE]

[Oracle ODBC Driver]

[Oracle OCI]

For example, if the error message does not contain the Ora prefix shown in the
following format, then error is an Oracle ODBC Driver error and should be self-
explanatory.

[Oracle][ODBC]Error message text here

If the error message contains the Ora prefix shown in the following format, then it is not
an Oracle ODBC Driver error.

[Oracle][ODBC][Ora]Error message text here

Appendix E
Error Messages

E-25

Note:

Although the error message contains the ORA- prefix, the actual error may
originate from one of several sources.

If the error message text starts with the ORA- prefix, then you can obtain more
information about the error in Oracle Database documentation.

Appendix E
Error Messages

E-26

F
Database Limits

This appendix describes database limits.

F.1 Database Limits
The following table lists the default and maximum values for parameters in a CREATE
DATABASE or CREATE CONTROLFILE statement.

Note:

Interdependencies between these parameters may affect permissible values.

Table F-1 CREATE CONTROLFILE and CREATE DATABASE Parameters

Parameter Default Maximum Value

MAXLOGFILES 16 4220

MAXLOGMEMBERS 2 5

MAXLOGHISTORY 100 65534

MAXDATAFILES 30 65534

MAXINSTANCES 1 1055

The following table lists the Oracle Database file size limits in bytes.

Table F-2 File Size Limits

File Type Platform File size limit

Data files Any 4,194,303 multiplied by the value of the
DB_BLOCK_SIZE parameter

Import/
Export files
and
SQL*Loade
r files

Oracle Solaris, Linux, IBM AIX on
POWER Systems (64-Bit), and HP-
UX: 32-bit files

2,147,483,647 bytes

Import/
Export files
and
SQL*Loade
r files

Oracle Solaris, Linux, IBM AIX on
POWER Systems (64-Bit), and HP-
UX: 64-bit files

Unlimited

Note: File size is limited by limits allowed
by the operating system on different file
systems.

Control
files

Oracle Solaris, Linux, IBM AIX on
POWER Systems (64-Bit), and HP-UX

25000 control file blocks with a block size
of 4096 bytes.

F-1

Index

Symbols
@ abbreviation, 1-1

A
A_TERM environment variable, 6-10
A_TERMCAP environment variable, 6-10
ADA_PATH environment variable, 1-5
adapters utility, 5-2
administering command line SQL, 4-1
AIX tools

Base Operation System tools, 8-5
Performance Tool Box Agent, 8-6
Performance Tool Box Manager, 8-6
SMIT, 8-7
System Management Interface tools, 8-7

AIXTHREAD_SCOPE environment variable,
C-10

archive buffers
tuning, C-3

ASM_DISKSTRING initialization parameter, 1-8
assistants

Oracle Database Configuration Assistant, 3-2
Oracle Database Upgrade Assistant, 3-1
Oracle Net Configuration Assistant, 3-1

asynchronous flag in SGA, D-8
asynchronous input/output, D-3, D-4

verifying, D-6
Automatic Storage Management

restarting, 2-3
stopping, 2-1

Automatic Storage Management, using, 8-12
automating

shutdown, 2-3
startup, 2-3

B
bit-length support, 6-5
block size, C-3

adjusting, 8-10
buffer cache

tuning size, 8-18
buffer manager, 8-8

BUFFER parameter, C-4

C
C library for, 6-4
cache size, 8-18
catching routine, 6-22

example, 6-22
CLASSPATH environment variable, 1-5
client shared libraries, 6-3
client static libraries, 6-3
COBDIR environment variable, 6-9
commands

iostat, 8-4
lsps, 8-4
sar, 8-3
SPOOL, 4-5
swap, 8-4
swapinfo, 8-4
swapon, 8-4
vmstat, 8-2

common environment
setting, 1-6

concurrent input/output, C-5
configuration files

ottcfg.cfg, 6-2
pcbcfg.cfg, 6-2
pccfor.cfg, 6-2
pcscfg.cfg, 6-2
pmscfg.cfg, 6-2
precompiler, 6-2

CPU scheduling, C-9
CPU_COUNT initialization parameter, D-10
CREATE CONTROLFILE parameter, F-1
CREATE DATABASE parameter, F-1

D
database

block size, C-3
database block size

setting, C-3
database limits, F-1
DB_BLOCK_SIZE initialization parameter, 8-13
DB_CACHE_SIZE initialization parameter, 8-13

Index-1

DB_FILE_MULTIBLOCK_READ_COUNT
parameter, C-8

dbhome file, 1-6
debugger programs, 6-3
demo_proc32.mk file, 6-8
demo_procob.mk file, 6-13
demonstration programs

for Pro*COBOL, 6-12
Oracle Call Interface, 6-18
Oracle JDBC/OCI, 6-19
Pro*C/C++, 6-6
Pro*FORTRAN, 6-14
SQL*Module for Ada, 6-16

demonstrations
PL/SQL, 7-1
precompiler, 7-1
SQL*Loader, 7-1

direct input/output, C-5
disk input/output

file system type, 8-12
input/output

slaves, C-7
pacing, C-8
tuning, 8-11

disks
monitoring performance, 8-13

DISPLAY environment variable, 1-5
dynamic linking

Oracle libraries and precompilers, 6-3

E
environment variables, 6-9

A_TERM, 6-10
A_TERMCAP, 6-10
ADA_PATH, 1-5
AIXTHREAD_SCOPE, C-10
all, 1-2
CLASSPATH, 1-5
COBDIR, 6-9
DISPLAY, 1-5
for Pro*COBOL, 6-9
HOME, 1-5
LANG, 1-5
LANGUAGE, 1-5
LD_LIBRARY_PATH, 1-5, 6-9, 6-10
LD_OPTIONS, 1-5
LIBPATH, 6-9
LPDEST, 1-5
MicroFocus COBOL compiler, 6-9
ORA_TZFILE, 1-2
ORACLE_BASE, 1-2
ORACLE_HOME, 1-3
ORACLE_PATH, 1-3
ORACLE_SID, 1-1, 1-3

environment variables (continued)
ORACLE_TRACE, 1-3
ORAENV_ASK, 1-3
PATH, 1-5, 4-4, 6-9, 6-10
PRINTER, 1-5
SHLIB_PATH, 6-9
SQLPATH, 1-3
TMPDIR, 1-5
TNS_ADMIN, 5-1
TWO_TASK, 1-4
USER, 1-5

executables
precompiler, 6-2
precompilers, 6-2
relinking, 3-2

Extended file system, 8-12

F
file systems

ext2/ext3, 8-12
GPFS, 8-12
JFS, 8-12
OCFS2, 8-12
S5, 8-12
UFS, 8-12
VxFS, 8-12

files
dbhome, 1-6
demo_procob.mk, 6-13
glogin.sql, 4-1
ins_precomp.mk, 6-2
login.sql, 4-1
Oracle Net Services configuration, 5-1
ottcfg.cfg, 6-2
pcbcfg.cfg, 6-2
pccfor.cfg, 6-2
pcscfg.cfg, 6-2
pmscfg.cfg, 6-2
privgroup, D-2, D-4
root.sh, 1-6

FORMAT precompiler, 6-13
Pro*COBOL, 6-13

G
getprivgrp command, D-2, D-4
glogin.sql file, 4-1
GPFS

considerations for using, C-5

H
HOME environment variable, 1-5
HP-UX dynamic processor reconfiguration, D-10

Index

Index-2

hugetlbfs
on SUSE, B-5

I
I/O buffers and SQL*Loader, C-4
I/O support

asynchronous, B-2
direct, B-2

implementing asynchronous input/output, D-4
Import utility, C-4
initialization parameters, 1-8

ASM_DISKSTRING, 1-8
CPU_COUNT, D-10
DB_BLOCK_SIZE, 8-13
DB_CACHE_SIZE, 8-13
JAVA_POOL_SIZE, 8-13
LARGE_POOL_SIZE, 8-13
LOG_BUFFERS, 8-13
SHARED_POOL_SIZE, 8-13

input/output
asynchronous, C-7, D-3
slaves, C-7
tuning, 8-11

ins_precomp.mk file, 6-2
installing

SQL*Plus command line Help, 4-3
iostat command, 8-4
IPC protocol, 5-2
ireclen, 6-3

J
JAVA_POOL_SIZE initialization parameters,

8-13
JFS2 considerations, C-5
JFSconsiderations, C-5
Journaled file system, 8-12, C-5

L
LANG environment variable, 1-5
LANGUAGE environment variable, 1-5
LARGE_POOL_SIZE initialization parameters,

8-13
LD_LIBRARY_PATH environment variable, 1-5,

6-9, 6-10
LD_OPTIONS environment variable, 1-5
libclntst12.a, 6-4
LIBPATH environment variable, 6-9
libraries

client shared and static, 6-3
lightweight timer implementation, D-3
Linux

Linux (continued)
resource management, B-4

Linux tools, 8-5
listener

setting up for TCP/IP or TCP/IP with Secure
Sockets Layer, 5-4

LOG_BUFFERS initialization parameters, 8-13
login.sql file, 4-1
LPDEST environment variable, 1-5
lsps command, 8-4

M
make files

custom, 6-20
demo_proc32.mk, 6-8
demo_procob.mk, 6-13
ins_precomp.mk, 6-2

MAXDATAFILES parameter, F-1
MAXINSTANCES parameter, F-1
MAXLOGFILES parameter, F-1
MAXLOGHISTORY parameter, F-1
MAXLOGMEMBERS parameter, F-1
memory

contention, C-1
control paging, 8-10
swap space, 8-8
tuning, 8-8

MicroFocus COBOL compiler, 6-9
migrating, 3-1
minor numbers of 8-bit, D-6
MLOCK privilege, D-4
Multi-CPU Binding (MCB), A-4
multiple signal handlers, 6-22
multithreaded applications, 6-21

O
OCCI, 6-17

user programs, 6-18
OCI, 6-17

user programs, 6-18
operating system buffer cache, tuning, 8-18
operating system commands

getprivgrp, D-2
running, 4-4
setprivgrp, D-2

operating system tools
for AIX, 8-5
iostat, 8-4
lsps, 8-4
sar, 8-3
swap, 8-4
swapinfo, 8-4
swapon, 8-4

Index

3

operating system tools (continued)
vmstat, 8-2

ORA_NLS10 environment variable, 1-2
ORA_TZFILE environment variable, 1-2
Oracle block size, adjusting, 8-10
Oracle buffer manager, 8-8
Oracle C++ Call Interface, 6-17, 6-18
Oracle Call Interface, 6-17

demonstration programs, 6-18
Oracle Cluster Services Synchronization

Daemon
starting, 2-3
stopping, 2-3

Oracle Database, 3-2
restarting, 2-3

Oracle Database Client:, 6-4
Oracle Database Configuration Assistant

configuring, 3-2
Oracle Database environment variables

Oracle Database variables, 1-2
Oracle Database process

stopping, 2-1
Oracle Database tuning and large memory

allocations, D-8
Oracle Database Upgrade Assistant, 3-1
Oracle environment variables

ORA_NLS10, 1-2
ORACLE_BASE, 1-2
ORACLE_HOME, 1-3
ORACLE_SID, 1-3

Oracle JDBC/OCI
demonstration programs, 6-19

Oracle Net Configuration Assistant
using, 3-1

Oracle Net Services
configuration files, 5-1
IPC protocol, 5-2
protocol support, 5-2
protocols, 5-2
Secure Sockets Layer protocol, 5-3
TCP/IP protocol, 5-3

Oracle ODBC Driver, E-1
Oracle Protocol Support

IPC protocol, 5-2
TCP/IP protocol, 5-3
TCP/IP with Secure Sockets Layer protocol,

5-3
Oracle Solaris

resource management, A-4
Oracle Solaris tools, 8-4
ORACLE_BASE environment variable, 1-2
ORACLE_HOME environment variable, 1-3
ORACLE_PATH environment variable, 1-3
ORACLE_SID environment variable, 1-1, 1-3
ORACLE_TRACE environment variable, 1-3

ORAENV_ASK environment variable, 1-3
oreclen, 6-3
ottcfg.cfg file, 6-2

P
page-out activity, 8-10
paging

allocating sufficient, C-2
controlling, C-3
tuning, 8-8

parameters
BUFFER, C-4
CREATE CONTROLFILE, F-1
CREATE DATABASE, F-1
DB_FILE_MULTIBLOCK_READ_COUNT,

C-8
MAXDATAFILES, F-1
MAXLOGFILES, F-1
MAXLOGHISTORY, F-1
MAXLOGMEMBERS, F-1
SCHED_NOAGE, D-2
SGA_MAX_SIZE, A-3
shm_max, 8-13
shm_seg, 8-13
shmmax, 8-13
shmseg, 8-13

PATH environment variable, 1-5, 4-4, 6-9, 6-10
pcbcfg.cfg file, 6-2
pccfor.cfg file, 6-2
pcscfg.cfg file, 6-2
Performance Tool Box Agent, 8-6
PL/SQL demonstrations, 7-1
PL/SQL kernel demonstrations, 7-1
pmscfg.cfg file, 6-2
postinstallation tasks

configuration assistants, 3-1
precompiler executables

relinking, 6-2
precompilers

executables, 6-2
overview, 6-1
Pro*C/C++, 6-6
Pro*COBOL, 6-9
running demonstrations, 7-1
signals, 6-22
uppercase to lowercase conversion, 6-3
value of ireclen and oreclen, 6-3
vendor debugger programs, 6-3

PRINTER environment variable, 1-5
privgroup file, D-2, D-4
Pro*C/C++

demonstration programs, 6-6
make files, 6-7
signals, 6-22

Index

Index-4

Pro*C/C++ (continued)
user programs, 6-8

Pro*C/C++ precompiler, 6-6
Pro*COBOL

demonstration programs, 6-12
environment variables, 6-9
FORMAT precompiler, 6-13
naming differences, 6-9
Oracle Runtime system, 6-11
user programs, 6-13

Pro*FORTRAN demonstration programs, 6-14
PRODUCT_USER_PROFILE table, 4-2
protocols, 5-2

R
raw devices

buffer cache size, 8-18
raw logical volumes, C-5
relinking executables, 3-2
removing

SQL*Plus command line Help, 4-3
resilvering, with Oracle Database, C-9
restarting

Automatic Storage Management, 2-3
Oracle Database, 2-3

restrictions, SQL*Plus, 4-5
passwords, 4-5
resizing windows, 4-5
return codes, 4-5

root.sh script, 1-6

S
sar command, 8-3, 8-10
SCHED_NOAGE

enabling, D-2
scheduling policy, D-2

scripts
root.sh, 1-6

setprivgrp command, D-2, D-4
SGA, 8-13

determining the size of, 8-14
SGA_MAX_SIZE parameter, A-3
shared memory segments, D-1
SHARED_POOL_SIZE initialization parameters,

8-13
SHLIB_PATH environment variable, 6-9
shm_max parameter, 8-13
shm_seg parameter, 8-13
shmmax parameter, 8-13
shmseg parameter, 8-13
shutdown

automating, 2-3
SIGCLD signal, 6-21

SIGCONT signal, 6-21
SIGINT signal, 6-21
SIGIO signal, 6-21
signal handlers, 6-21
signal routine, 6-22

example, 6-22
signals

SIGCLD, 6-21
SIGCONT, 6-21
SIGINT, 6-21
SIGIO, 6-21
SIGPIPE, 6-22
SIGTERM, 6-22
SIGURG, 6-22

SIGPIPE signal, 6-22
SIGTERM signal, 6-22
SIGURG signal, 6-22
SPOOL command

SQL*Plus, 4-5
SQL*Loader, C-4
SQL*Loader demonstrations, 7-1
SQL*Module for Ada, 6-16

demonstration programs, 6-16
user programs, 6-17

SQL*Plus
command line Help, 4-2
default editor, 4-4
editor, 4-4
interrupting, 4-5
PRODUCT_USER_PROFILE table, 4-2
restrictions, 4-5
running operating system commands, 4-4
site profile, 4-1
SPOOL command, 4-5
system editor, 4-4
user profile, 4-1
using command-line SQL*Plus, 4-3

SQL*Plus command line Help
installing, 4-3
removing, 4-3

SQL*Plus, interrupting, 4-5
SQLPATH environment variable, 1-3
starting

Oracle Cluster Services Synchronization
Daemon, 2-3

startup
automating, 2-3

static linking
Oracle libraries and precompilers, 6-3

stopping
Oracle Cluster Services Synchronization

Daemon, 2-3
swap command, 8-4
swap space, 8-8

tuning, 8-8

Index

5

swap space allocation, 8-8
swapinfo command, 8-4
swapon command, 8-4
symfind utility, 6-20
SYSDATE, 1-7
system editor

SQL*Plus, 4-4
system time, 1-7

T
tables

PRODUCT_USER_PROFILE, 4-2
TCP/IP protocol, 5-3
TCP/IP with Secure Sockets Layer protocol, 5-3
thread support, 6-21
TMPDIR environment variable, 1-5
Transparent Hugepages

disable for Oracle Database servers, B-8
troubleshooting

I/O lags, B-8
ocssd.log threads blocked, B-8

tuning, 8-8
disk input/output, 8-11
input/output bottlenecks, 8-11
large memory allocations, D-8
memory management, 8-8
recommendations, D-9

tuning tools
iostat command, 8-4
lsps command, 8-4
Performance Tool Box Agent, 8-6
Performance Tool Box Manager, 8-6
sar command, 8-3
swap command, 8-4
swapinfo command, 8-4
swapon command, 8-4
vmstat command, 8-2

TWO_TASK environment variable, 1-4

U
undefined symbols, 6-20
Unix file systems, 8-12
UNIX System V file system, 8-12
upgraded databases

upgrading, 3-1
USER environment variable, 1-5
user interrupt handler, 6-22
user profile

SQL*Plus, 4-1
user programs

for Pro*C/C++, 6-8
OCCI, 6-18
OCI, 6-18
Pro*C/C++, 6-8
Pro*COBOL, 6-13
SQL*Module for Ada, 6-17

using command-line SQL*Plus, 4-3
utilities

adapters, 5-2
Import, C-4
symfind, 6-20

V
Veritas file system, 8-12
virtual memory data pages

tuning Oracle Database, D-8
virtual memory page size, default, D-8
vmstat command, 8-2

X
X/Open Distributed Transaction Processing XA

interface, 6-23
XA functionality, 6-23

Index

Index-6

	Contents
	Preface
	Audience
	Documentation Accessibility
	Set Up Java Access Bridge to Implement Java Accessibility
	Related Documentation
	Conventions
	Command Syntax
	Terminology
	Accessing Documentation

	Changes in This Release for Oracle Database Administrator's Reference
	Changes in Oracle Database 18c
	New Features
	Deprecated Features for Oracle Database 18c

	1 Administering Oracle Database
	1.1 Overview
	1.2 Environment Variables
	1.2.1 Oracle Database Environment Variables
	1.2.2 Linux and UNIX Environment Variables
	1.2.3 Setting a Common Environment
	1.2.4 Setting the System Time Zone

	1.3 Initialization Parameters
	1.3.1 ASM_DISKSTRING Initialization Parameter
	1.3.2 DISK_ASYNCH_IO Initialization Parameter (HP-UX)
	1.3.3 PROCESSOR_GROUP_NAME Initialization Parameter
	1.3.4 Managing Diagnostic Data

	2 Stopping and Starting Oracle Software
	2.1 Stopping and Starting Oracle Processes
	2.1.1 Stopping and Starting Oracle Database and Oracle Automatic Storage Management Instances
	2.1.1.1 Stopping an Oracle Database or Oracle Automatic Storage Management Instance
	2.1.1.2 Restarting an Oracle Database or Oracle Automatic Storage Management Instance

	2.1.2 Stopping and Starting Oracle Restart

	2.2 About Automating Database Shutdown and Startup
	2.2.1 Automating Database Startup and Shutdown

	3 Configuring Oracle Database
	3.1 Using Configuration Assistants
	3.1.1 Using Oracle Net Configuration Assistant
	3.1.2 Using Oracle Database Upgrade Assistant
	3.1.3 Using Oracle Database Configuration Assistant

	3.2 Relinking Executables

	4 Administering SQL*Plus
	4.1 Administering Command-Line SQL*Plus
	4.1.1 Using Setup Files
	4.1.2 Using the PRODUCT_USER_PROFILE Table
	4.1.3 Using Oracle Database Sample Schemas
	4.1.4 Installing and Removing SQL*Plus Command-Line Help
	4.1.4.1 Installing SQL*Plus Command-Line Help
	4.1.4.2 Removing SQL*Plus Command-Line Help

	4.2 Using Command-Line SQL*Plus
	4.2.1 Using a System Editor from SQL*Plus
	4.2.2 Running Operating System Commands from SQL*Plus
	4.2.3 Interrupting SQL*Plus
	4.2.4 Using the SPOOL Command

	4.3 SQL*Plus Restrictions
	4.3.1 Resizing Windows
	4.3.2 Return Codes
	4.3.3 Hiding the Password

	5 Configuring Oracle Net Services
	5.1 Locating Oracle Net Services Configuration Files
	5.2 Using Adapters Utility
	5.3 Using Oracle Protocol Support
	5.3.1 IPC Protocol Support
	5.3.2 TCP/IP Protocol Support
	5.3.3 TCP/IP with Secure Sockets Layer Protocol Support

	5.4 Setting Up the Listener for TCP/IP or TCP/IP with Secure Sockets Layer

	6 Using Oracle Precompilers and the Oracle Call Interface
	6.1 Overview of Oracle Precompilers
	6.1.1 Precompiler Configuration Files
	6.1.2 Relinking Precompiler Executables
	6.1.3 Issues Common to All Precompilers
	6.1.4 Static and Dynamic Linking
	6.1.5 Client Shared and Static Libraries
	6.1.6 Generating the Client Static Library

	6.2 Bit-Length Support for Client Applications
	6.3 Pro*C/C++ Precompiler
	6.3.1 Pro*C/C++ Demonstration Programs
	6.3.2 Pro*C/C++ User Programs

	6.4 Pro*COBOL Precompiler
	6.4.1 Pro*COBOL Environment Variables
	6.4.1.1 Micro Focus Server Express COBOL Compiler
	6.4.1.2 Acucorp ACUCOBOL-GT COBOL Compiler

	6.4.2 Pro*COBOL Oracle Runtime System
	6.4.3 Pro*COBOL Demonstration Programs
	6.4.4 Pro*COBOL User Programs
	6.4.5 FORMAT Precompiler Option

	6.5 Pro*FORTRAN Precompiler
	6.5.1 Pro*FORTRAN Demonstration Programs
	6.5.2 Pro*FORTRAN User Programs

	6.6 SQL*Module for ADA
	6.6.1 SQL*Module for Ada Demonstration Programs
	6.6.2 SQL*Module for Ada User Programs

	6.7 OCI and OCCI
	6.7.1 OCI and OCCI Demonstration Programs
	6.7.2 OCI and OCCI User Programs

	6.8 Running Oracle JDBC/OCI Programs with a 64-Bit Driver
	6.9 Custom Make Files
	6.10 Correcting Undefined Symbols
	6.11 Multithreaded Applications
	6.12 Using Signal Handlers
	6.13 XA Functionality

	7 SQL*Loader and PL/SQL Demonstrations
	7.1 SQL*Loader Demonstrations
	7.2 PL/SQL Demonstrations
	7.3 Calling 32-Bit External Procedures from 64-Bit Oracle Database PL/SQL

	8 Tuning Oracle Database
	8.1 Importance of Tuning
	8.2 Operating System Tools
	8.2.1 vmstat
	8.2.2 sar
	8.2.3 iostat
	8.2.4 swap, swapinfo, swapon, or lsps
	8.2.5 Oracle Solaris Tools
	8.2.6 Linux Tools
	8.2.7 IBM AIX on POWER Systems (64-Bit) Tools
	8.2.7.1 Base Operation System Tools
	8.2.7.2 Performance Toolbox
	8.2.7.3 System Management Interface Tool

	8.2.8 HP-UX Tools

	8.3 Tuning Memory Management
	8.3.1 Allocating Sufficient Swap Space
	8.3.2 Monitoring Paging
	8.3.3 Adjusting Oracle Block Size
	8.3.4 Allocating Memory Resource

	8.4 Tuning Disk Input-Output
	8.4.1 Using Automatic Storage Management
	8.4.2 Choosing the Appropriate File System Type

	8.5 Monitoring Disk Performance
	8.5.1 Monitoring Disk Performance on Operating Systems
	8.5.2 Using Disk Resync to Monitor Automatic Storage Management Disk Group

	8.6 System Global Area
	8.6.1 Determining the Size of the SGA
	8.6.2 System Resource Verifier Utility
	8.6.2.1 Purpose of the sysresv Utility
	8.6.2.2 Preconditions for Using sysresv
	8.6.2.3 Syntax for sysresv
	8.6.2.4 Examples of Using sysresv

	8.6.3 Guidelines for Setting Semaphore Parameters
	8.6.4 Shared Memory on IBM AIX on POWER Systems (64-Bit)

	8.7 Tuning the Operating System Buffer Cache

	A Administering Oracle Database on Oracle Solaris
	A.1 Oracle Solaris Shared Memory Environment
	A.1.1 About Optimized Shared Memory
	A.1.2 Checking for Optimized Shared Memory
	A.1.3 About ISM and DISM
	A.1.4 Checking for ISM or DISM
	A.1.5 About the oradism Utility
	A.1.6 How Oracle Database Decides Between OSM, ISM and DISM

	A.2 About Creating Solaris Resource Pools
	A.3 About Multi-CPU Binding Functionality

	B Administering Oracle Database on Linux
	B.1 Supporting Asynchronous Input-Output
	B.2 Asynchronous Input-Output Support
	B.3 Enabling Direct Input-Output Support
	B.4 Enabling Simultaneous Multithreading
	B.5 Allocating Shared Resources
	B.6 About Creating Cgroups on Linux Systems
	B.7 Overview of HugePages
	B.7.1 Reviewing HugePages Memory Allocation
	B.7.2 Using HugePages on Linux
	B.7.3 Tuning SGA With HugePages
	B.7.4 Configuring HugePages on Linux
	B.7.5 Restrictions for HugePages Configurations
	B.7.6 Disabling Transparent HugePages

	C Administering Oracle Database on IBM AIX on POWER Systems (64-Bit)
	C.1 Memory and Paging
	C.1.1 Kernel Parameters
	C.1.2 Allocating Sufficient Paging Space
	C.1.3 Controlling Paging
	C.1.4 Setting the Database Block Size
	C.1.5 Tuning the Log Archive Buffers
	C.1.6 Input-Output Buffers and SQL*Loader

	C.2 Disk Input-Output Issues
	C.2.1 IBM AIX on POWER Systems (64-Bit) Logical Volume Manager
	C.2.2 Using Journaled File Systems Compared to Raw Logical Volumes
	C.2.3 Using Asynchronous Input-Output
	C.2.4 Input-Output Slaves
	C.2.5 Using the DB_FILE_MULTIBLOCK_READ_COUNT Parameter
	C.2.6 Tuning Disk Input-Output Pacing
	C.2.7 Resilvering with Oracle Database

	C.3 CPU Scheduling and Process Priorities
	C.4 AIXTHREAD_SCOPE Environment Variable
	C.5 Network Information Service external naming support
	C.6 Configuring IBM Java Secure Socket Extension Provider with Oracle JDBC Thin Driver

	D Administering Oracle Database on HP-UX
	D.1 HP-UX Shared Memory Segments for an Oracle Instance
	D.2 HP-UX SCHED_NOAGE Scheduling Policy
	D.2.1 Enabling SCHED_NOAGE for Oracle Database

	D.3 Lightweight Timer Implementation
	D.4 Asynchronous Input-Output
	D.4.1 Granting MLOCK Privilege
	D.4.2 Implementing Asynchronous Input-Output
	D.4.3 Verifying Asynchronous Input-Output
	D.4.3.1 Verifying That HP-UX Asynchronous Driver is Configured for Oracle Database
	D.4.3.2 Verifying that Oracle Database is Using Asynchronous Input-Output

	D.4.4 Asynchronous Flag in SGA

	D.5 Large Memory Allocations and Oracle Database Tuning
	D.5.1 Default Large Virtual Memory Page Size
	D.5.2 Tuning Recommendations
	D.5.3 Tunable Base Page Size

	D.6 CPU_COUNT Initialization Parameter and HP-UX Dynamic Processor Reconfiguration
	D.7 Network Information Service external naming support
	D.8 Activating and Setting Expanded Host Names and Node Names

	E Using Oracle ODBC Driver
	E.1 Oracle ODBC Features Not Supported
	E.2 Implementation of Data Types
	E.3 Limitations on Data Types
	E.4 Format of the Connection String for the SQLDriverConnect Function
	E.5 Reducing Lock Timeout in a Program
	E.6 Linking ODBC Applications
	E.7 Obtaining Information About ROWIDs
	E.8 ROWIDs in a WHERE Clause
	E.9 Enabling Result Sets
	E.10 Enabling EXEC Syntax
	E.11 Supported Functionality
	E.11.1 API Conformance
	E.11.2 Implementation of ODBC API Functions
	E.11.3 Implementation of the ODBC SQL Syntax
	E.11.4 Implementation of Data Types

	E.12 Unicode Support
	E.12.1 Unicode Support Within the ODBC Environment
	E.12.2 Unicode Support in ODBC API
	E.12.3 SQLGetData Performance
	E.12.4 Unicode Samples

	E.13 Performance and Tuning
	E.13.1 General ODBC Programming Guidelines
	E.13.2 Data Source Configuration Options
	E.13.3 DATE and TIMESTAMP Data Types

	E.14 Error Messages

	F Database Limits
	F.1 Database Limits

	Index

